王帆宇. 新时期中国社会转型进程中的生态文明建设研究[D]. 苏州:苏州大学, 2016:1-298 Wang F Y. Study on the construction of ecological civilization in the process of transformation of China society in the new period[D]. Suzhou:Soochow University, 2016:1
-298(in Chinese)
|
李婧, 周艳文, 陈森, 等. 我国土壤镉污染现状、危害及其治理方法综述[J]. 安徽农学通报, 2015, 21(24):104-107
Li J, Zhou Y W, Chen S, et al. Actualities, damage and management of soil cadmium pollution in China[J]. Anhui Agricultural Science Bulletin, 2015, 21(24):104-107(in Chinese)
|
黄毅, 邓志英. 我国重金属污染区耕地轮作休耕存在的问题及对策——以湖南省为例[J]. 环境保护, 2019, 47(13):22-26
Huang Y, Deng Z Y. Problems and countermeasures on farmland rotation and fallow system in the heavy metal polluted region of China[J]. Environmental Protection, 2019, 47(13):22-26(in Chinese)
|
纪冬丽, 孟凡生, 薛浩, 等. 国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报, 2016, 6(1):90-99
Ji D L, Meng F S, Xue H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology, 2016, 6(1):90-99(in Chinese)
|
陈文艳, 耿庆芬, 王燕, 等. 重金属污染土壤的植物修复及植物联合修复研究进展[J]. 广东化工, 2020, 47(2):87-88
, 95 Chen W Y, Geng Q F, Wang Y, et al. Review in phytoremediation and phytoremediation of heavy metal contaminated soils[J]. Guangdong Chemical Industry, 2020, 47(2):87-88, 95(in Chinese)
|
王维薇, 林清. 国内外土壤镉污染及其修复技术的现状与展望[J]. 绿色科技, 2017(4):90-93, 102
Wang W W, Lin Q. Present situation and prospect of soil cadmium pollution and remediation technology at home and abroad[J]. Journal of Green Science and Technology, 2017(4):90-93, 102(in Chinese)
|
钱前, 瞿礼嘉, 袁明, 等. 2012年中国植物科学若干领域重要研究进展[J]. 植物学报, 2013, 48(3):231-287
Qian Q, Qu L J, Yuan M, et al. Research advances on plant science in China in 2012[J]. Chinese Bulletin of Botany, 2013, 48(3):231-287(in Chinese)
|
倪妮, 宋洋, 王芳, 等. 多环芳烃污染土壤生物联合强化修复研究进展[J]. 土壤学报, 2016, 53(3):561-571
Ni N, Song Y, Wang F, et al. A review of researches on intensified bio-remediation of polycyclic aromatic hydrocarbons contaminated soils[J]. Acta Pedologica Sinica, 2016, 53(3):561-571(in Chinese)
|
刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2):231-248
Liu J W, Li X Z, Yao M J. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2):231-248(in Chinese)
|
王梦姣, 杨国鹏, 乔帅, 等. 植物-根际微生物协同修复有机物污染土壤的研究进展[J]. 江苏农业科学, 2017, 45(1):5-8
Wang M J, Yang G P, Qiao S, et al. Research progress of plant-rhizosphere microbe synergistic remediation of organic contaminated soil[J]. Jiangsu Agricultural Sciences, 2017, 45(1):5-8(in Chinese)
|
刘洋, 张玉烛, 方宝华, 等. 栽培模式对水稻镉积累差异及其与光合生理关系的研究[J]. 农业资源与环境学报, 2014, 31(5):450-455
Liu Y, Zhang Y Z, Fang B H, et al. Relationships between cadmium uptake characteristics and photosynthetic physiology under different cultivation modes of rice[J]. Journal of Agricultural Resources and Environment, 2014, 31(5):450-455(in Chinese)
|
Li J R, Xu Y M. Immobilization of Cd in paddy soil using moisture management and amendment[J]. Environmental Science and Pollution Research International, 2015, 22(7):5580-5586
|
董萌, 赵运林, 周小梅, 等. 土壤镉污染现状与重金属修复方法研究[J]. 绿色科技, 2012(4):212-215 Dong M, Zhao Y L, Zhou X M, et al.Current situation of soil Cd pollution and research progress of heavy metal repairing[J]. Journal of Green Science and Technology, 2012
(4):212-215(in Chinese)
|
Pendias H, Kabata-Pendias A. Trace elements in soils and plants[J]. Experimental Agriculture, 2011, 47(4):739
|
胡文. 土壤-植物系统中重金属的生物有效性及其影响因素的研究[D]. 北京:北京林业大学, 2008:1-224 Hu W. Heavy metal bio-availability and its affecting factors in soil-plant system[D]. Beijing:Beijing Forestry University, 2008:1
-224(in Chinese)
|
王姗姗, 王颜红, 王世成, 等. 辽北地区农田土壤-作物系统中Cd、Pb的分布及富集特征[J]. 土壤通报, 2010, 41(5):1175-1179
Wang S S, Wang Y H, Wang S C, et al. Distribution and accumulation of heavy metals in agricultural soil-crop systems of Tieling Area, Liaoning Province[J]. Chinese Journal of Soil Science, 2010, 41(5):1175-1179(in Chinese)
|
Singh S, Kumar M. Heavy metal load of soil, water and vegetables in peri-urban Delhi[J]. Environmental Monitoring and Assessment, 2006, 120(1):79-91
|
王彦斌, 杨一鸣, 曾亮, 等. 甘肃省榆中县菜地土壤与蔬菜中重金属含量及健康风险评估[J]. 干旱地区农业研究, 2015, 33(6):234-241
Wang Y B, Yang Y M, Zeng L, et al. A survey of heavy metals concentrations in vegetables and soils in Yuzhong County of Gansu Province and their health risk[J]. Agricultural Research in the Arid Areas, 2015, 33(6):234-241(in Chinese)
|
陈小华, 沈根祥, 白玉杰, 等. 不同作物对土壤中Cd的富集特征及低累积品种筛选[J]. 环境科学, 2019, 40(10):4647-4653
Chen X H, Shen G X, Bai Y J, et al. Accumulation of Cd in different crops and screening of low-Cd accumulation cultivars[J]. Environmental Science, 2019, 40(10):4647-4653(in Chinese)
|
Ahmad J U, Goni M A. Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh[J]. Environmental Monitoring and Assessment, 2010, 166(1):347-357
|
陈林, 银玲, 陈鸿平, 等. 不同种植区土壤对川芎药材无机元素富集影响研究[J]. 时珍国医国药, 2014, 25(8):2004-2006
Chen L, Yin L, Chen H P, et al. Study on the origin soil impacts on the enrichment of inorganic elements in Ligusticum chuanxiong form different planting regions[J]. Lishizhen Medicine and Materia Medica Research, 2014, 25(8):2004-2006(in Chinese)
|
尹明, 杨大为, 唐慧娟, 等. 黄麻修复重度镉污染农田的品种筛选[J]. 中国麻业科学, 2020, 42(4):150-156
Yin M, Yang D W, Tang H J, et al. Comparison of the capacity of different varieties of jute (Corchorus capsularis L.) to remediate heavily cadmium-contaminated farmland[J]. Plant Fiber Sciences in China, 2020, 42(4):150-156(in Chinese)
|
Khan A, Javid S, Muhmood A, et al. Heavy metal status of soil and vegetables grown on peri-urban area of Lahore District[J]. Plant, Soil and Environment, 2013, 32(1):49-54
|
黄涂海. 镉污染农田土壤的分类管控实践[D]. 杭州:浙江大学, 2019:1-81 Huang T H. Classified management and control practice of cadmium contaminated farmland soil[D]. Hangzhou:Zhejiang University, 2019:1
-81(in Chinese)
|
李小琦. 云南典型红壤农田Pb、Cd污染特征及其风险评价[D]. 昆明:云南大学, 2018:1-84 Li X Q. The characteristics and risk assessment of Pb and Cd in the red soil areas of farmland in Yunnan Province[D]. Kunming:Yunnan University, 2018:1
-84(in Chinese)
|
Lǎčtuşu R, Rǎuţǎ C, Cârstea S, et al. Soil-plant-man relationships in heavy metal polluted areas in Romania[J]. Applied Geochemistry, 1996, 11(1-2):105-107
|
宋波, 杨子杰, 张云霞, 等. 广西西江流域土壤镉含量特征及风险评估[J]. 环境科学, 2018, 39(4):1888-1900
Song B, Yang Z J, Zhang Y X, et al. Accumulation of Cd and its risks in the soils of the Xijiang River drainage basin in Guangxi[J]. Environmental Science, 2018, 39(4):1888-1900(in Chinese)
|
刘意章, 肖唐付, 熊燕, 等. 西南高镉地质背景区农田土壤与农作物的重金属富集特征[J]. 环境科学, 2019, 40(6):2877-2884
Liu Y Z, Xiao T F, Xiong Y, et al. Accumulation of heavy metals in agricultural soils and crops from an area with a high geochemical background of cadmium, southwestern China[J]. Environmental Science, 2019, 40(6):2877-2884(in Chinese)
|
Wiersma D, van Goor B J, van der Veen N G. Cadmium, lead, mercury and arsenic concentrations in crops and corresponding soils in the Netherlands[J]. Journal of Agricultural and Food Chemistry, 1986, 34(6):1067-1074
|
孙亚芳, 王祖伟, 孟伟庆, 等. 天津污灌区小麦和水稻重金属的含量及健康风险评价[J]. 农业环境科学学报, 2015, 34(4):679-685
Sun Y F, Wang Z W, Meng W Q, et al. Contents and health risk assessment of heavy metals in wheat and rice grown in Tianjin sewage irrigation area, China[J]. Journal of Agro-Environment Science, 2015, 34(4):679-685(in Chinese)
|
Sanderson D V, Voutchkov M, Benkeblia N. Bioaccumulation of cadmium in potato tuber grown on naturally high levels cadmium soils in Jamaica[J]. Science of the Total Environment, 2019, 649:909-915
|
谢团辉, 郭京霞, 陈炎辉, 等. 福建省某矿区周边土壤-农作物重金属空间变异特征与健康风险评价[J]. 农业环境科学学报, 2019, 38(3):544-554
Xie T H, Guo J X, Chen Y H, et al. Spatial variability and health risk assessment of heavy metals in soils and crops around the mining area in Fujian Province, China[J]. Journal of Agro-Environment Science, 2019, 38(3):544-554(in Chinese)
|
El-Hassanin A S, Samak M R, Abdel-Rahman G N, et al. Risk assessment of human exposure to lead and cadmium in maize grains cultivated in soils irrigated either with low-quality water or freshwater[J]. Toxicology Reports, 2020, 7:10-15
|
张桂玲, 罗绪强, 廖艳梅, 等. 贵阳市南明河中下游水东段沿岸菜地农作物重金属污染评价[J]. 山地农业生物学报, 2019, 38(3):56-62
Zhang G L, Luo X Q, Liao Y M, et al. Evaluation of heavy metal contamination of vegetables in the fields along the Shuidong section of the middle and lower reaches of Nanming River in Guiyang City[J]. Journal of Mountain Agriculture and Biology, 2019, 38(3):56-62(in Chinese)
|
Coppola S, Dumontet S, Pontonio M, et al. Effect of cadmium-bearing sewage sludge on crop plants and microorganisms in two different soils[J]. Agriculture, Ecosystems & Environment, 1988, 20(3):181-194
|
蔡保松, 陈同斌, 廖晓勇, 等. 土壤砷污染对蔬菜砷含量及食用安全性的影响[J]. 生态学报, 2004, 24(4):711-717
Cai B S, Chen T B, Liao X Y, et al. Arsenic concentrations in soils and vegetables and their risk assessments in highly contaminated area in Hu'nan Province[J]. Acta Ecologica Sinica, 2004, 24(4):711-717(in Chinese)
|
李伟, 刘晖. 成都地区典型土壤与农作物中砷含量研究[J]. 四川环境, 2008, 27(5):27-30
, 43 Li W, Liu H. Study on the arsenical content of the typical soils and crops in Chengdu region[J]. Sichuan Environment, 2008, 27(5):27-30, 43(in Chinese)
|
马先杰. 贵州水城典型铅锌矿区蔬菜重金属污染特征及效应研究[D]. 贵阳:贵州大学, 2020:1-80 Ma X J. Characteristics and effects of heavy metals pollution in vegetables in the typical lead-zinc mines in Shuicheng, Guizhou[D]. Guiyang:Guizhou University, 2020:1
-80(in Chinese)
|
冉继伟, 宁平, 孙鑫, 等. 云南个旧土壤农作物重金属污染特征及潜在风险[J]. 中国环境监测, 2019, 35(5):62-68
Ran J W, Ning P, Sun X, et al. Heavy metal pollution characteristics and potential risks of soil and crops in Gejiu, Yunnan[J]. Environmental Monitoring in China, 2019, 35(5):62-68(in Chinese)
|
夏立江, 华珞, 韦东普. 部分地区蔬菜中的含砷量[J]. 土壤, 1996, 28(2):105-109
Xia L J, Hua L, Wei D P. Arsenic content in vegetables in some areas[J]. Soils, 1996, 28(2):105-109(in Chinese)
|
Xu J L, Thornton I. Arsenic in garden soils and vegetable crops in Cornwall, England:Implications for human health[J]. Environmental Geochemistry and Health, 1985, 7(4):131-133
|
Vetter J. Arsenic content of some edible mushroom species[J]. European Food Research and Technology, 2004, 219(1):71-74
|
Das H K, Mitra A K, Sengupta P K, et al. Arsenic concentrations in rice, vegetables, and fish in Bangladesh:A preliminary study[J]. Environment International, 2004, 30(3):383-387
|
Meharg A A, Williams P N, Adomako E, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice[J]. Environmental Science & Technology, 2009, 43(5):1612-1617
|
Batista B L Jr, Souza J M, De Souza S S, et al. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption[J]. Journal of Hazardous Materials, 2011, 191(1-3):342-348
|
Tinggi U, Schoendorfer N, Scheelings P, et al. Arsenic in rice and diets of children[J]. Food Additives & Contaminants Part B, 2015, 8(2):149-156
|
García-Rico L, Valenzuela-Rodríguez M P, Meza-Montenegro M M, et al. Arsenic in rice and rice products in Northwestern Mexico and health risk assessment[J]. Food Additives & Contaminants Part B, 2020, 13(1):25-33
|
李婷, 吴明辉, 杨馨婷, 等. 植物与微生物对重金属的抗性机制及联合修复研究进展[J]. 应用与环境生物学报, 2021, 27(5):1405-1414
Li T, Wu M H, Yang X T, et al. Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(5):1405-1414(in Chinese)
|
Stone J, Bacon C, White J. An Overview of Endophytic Microbes:Endophytism Defined[M]//Bacon C W. Microbial Endophytes. New York:Marcel Dekker, 2000:17-44
|
Ren A Z, Li C, Gao Y B. Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire ex. Schreb[J]. International Journal of Phytoremediation, 2011, 13(3):233-243
|
Chang H X, Haudenshield J S, Bowen C R, et al. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity[J]. Frontiers in Microbiology, 2017, 8:519
|
Glick B R, Cheng Z Y, Czarny J, et al. Promotion of plant growth by ACC deaminase-producing soil bacteria[J]. European Journal of Plant Pathology, 2007, 119(3):329-339
|
Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae)[J]. The New Phytologist, 1994, 127(1):61-68
|
孙瑞莲. 镉超积累植物的生态特征及污染耐性机理分析[D]. 北京:中国科学院研究生院, 2006:1-169 Sun R L. Ecological characteristics of cadmium-hyperaccumulators and their mechanism analysis of pollution endurance[D]. Beijing:Graduate School of Chinese Academy of Sciences, 2006:1
-169(in Chinese)
|
张新成. 东南景天内生菌分离鉴定及其强化重金属超积累效应与机制[D]. 杭州:浙江大学, 2012:1-189 Zhang X C. Isolation and identification of endophytes from Sedum alfredii and the mechanisms of their enhancement on heavy metal hyperaccumulation[D]. Hangzhou:Zhejiang University, 2012:1
-189(in Chinese)
|
Sarma H. Metal hyperaccumulation in plants:A review focusing on phytoremediation technology[J]. Journal of Environmental Science and Technology, 2011, 4(2):118-138
|
李熠, 陈熹, 肖丕显, 等. 中国镉超富集植物种类组成及分布特征研究[J]. 中国野生植物资源, 2020, 39(6):11-16
Li Y, Chen X, Xiao P X, et al. Study on the species composition, geographical distribution and flora characteristics of Cd hyperaccumulators in China[J]. Chinese Wild Plant Resources, 2020, 39(6):11-16(in Chinese)
|
段桂兰, 王利红, 陈玉, 等. 植物超富集砷机制研究的最新进展[J]. 环境科学学报, 2007, 27(5):714-720
Duan G L, Wang L H, Chen Y, et al. Recent developments in understanding the mechanisms of arsenic hyperaccumulation in plants[J]. Acta Scientiae Circumstantiae, 2007, 27(5):714-720(in Chinese)
|
Trippe R C, Pilon-Smits E. Selenium transport and metabolism in plants:Phytoremediation and biofortification implications[J]. Journal of Hazardous Materials, 2021, 404:124178
|
Nejad Z D, Jung M C, Kim K H. Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology[J]. Environmental Geochemistry and Health, 2018, 40(3):927-953
|
Desai M, Haigh M, Walkington H. Phytoremediation:Metal decontamination of soils after the sequential forestation of former opencast coal land[J]. The Science of the Total Environment, 2019, 656:670-680
|
Koźmińska A, Wiszniewska A, Hanus-Fajerska E, et al. Recent strategies of increasing metal tolerance and phytoremediation potential using genetic transformation of plants[J]. Plant Biotechnology Reports, 2018, 12(1):1-14
|
Sun R, Sheng X, Li Y, et al. Phyto-accumulation of heavy metals and characteristics of rhizosphere microbes in heavy metal contaminated soils, Qixia, Nanjing[J]. Acta Pedologica Sinica, 2011, 48(5):1013-1020
|
李韵诗, 冯冲凌, 吴晓芙, 等. 重金属污染土壤植物修复中的微生物功能研究进展[J]. 生态学报, 2015, 35(20):6881-6890
Li Y S, Feng C L, Wu X F, et al. A review on the functions of microorganisms in the phytoremediation of heavy metal-contaminated soils[J]. Acta Ecologica Sinica, 2015, 35(20):6881-6890(in Chinese)
|
Sheng X F, Xia J J, Jiang C Y, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution, 2008, 156(3):1164-1170
|
Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5):669-678
|
Abou-Shanab R A, Ghanem K, Ghanem N, et al. The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils[J]. World Journal of Microbiology and Biotechnology, 2008, 24(2):253-262
|
Kuffner M, de Maria S, Puschenreiter M, et al. Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability[J]. Journal of Applied Microbiology, 2010, 108(4):1471-1484
|
廖继佩, 林先贵, 曹志洪. 内外生菌根真菌对重金属的耐受性及机理[J]. 土壤, 2003, 35(5):370-377
Liao J P, Lin X G, Cao Z H. Tolerance of mycorrhizal fungi to heavy metals and mechanisms[J]. Soils, 2003, 35(5):370-377(in Chinese)
|
罗巧玉, 王晓娟, 林双双, 等. AM真菌对重金属污染土壤生物修复的应用与机理[J]. 生态学报, 2013, 33(13):3898-3906
Luo Q Y, Wang X J, Lin S S, et al. Mechanism and application of bioremediation to heavy metal polluted soil using arbuscular mycorrhizal fungi[J]. Acta Ecologica Sinica, 2013, 33(13):3898-3906(in Chinese)
|
谌金吾. 三叶鬼针草(Bidens pilosa L.)对重金属Cd、Pb胁迫的响应与修复潜能研究[D]. 重庆:西南大学, 2013:1-155 Chen J W. Study on response and potential phytoremediation of Bidens pilosa L. in cadmium and lead stress[D]. Chongqing:Southwest University, 2013:1
-155(in Chinese)
|
Hakeem K R. Crop Production and Global Environmental Issues[M]. Cham:Springer International Publishing, 2015:103-122
|
何玉君, 孙梦荷, 沈亚婷, 等. 超富集植物与重金属相互作用机制及应用研究进展[J]. 岩矿测试, 2020, 39(5):639-657
He Y J, Sun M H, Shen Y T, et al. Research progress on the interaction mechanism between hyperaccumulator and heavy metals and its application[J]. Rock and Mineral Analysis, 2020, 39(5):639-657(in Chinese)
|
邓小鹏. 超量积累植物龙葵(Solanum nigrum L.)对镉的吸收、积累及耐性机理研究[D]. 南京:南京农业大学, 2010:1-147 Deng X P. Study on absorption, accumulation and tolerance mechanisms of cadmium in hyperaccumulator Solanum nigrum L.[D]. Nanjing:Nanjing Agricultural University, 2010:1
-147(in Chinese)
|
徐小逊. 超富集植物豨莶(Siegesbeckia orientalis L.)对镉的吸收和耐性机理研究[D]. 雅安:四川农业大学, 2018:1-147 Xu X X. Mechanism of cadmium absorption and tolerance of hyperaccumulator Siegesbeckia orientalis L.[D]. Yaan:Sichuan Agricultural University, 2018:1
-147(in Chinese)
|
Seth C S, Kumar Chaturvedi P, Misra V. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L.[J]. Ecotoxicology and Environmental Safety, 2008, 71(1):76-85
|
Tu C, Ma L Q. Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L.[J]. Plant and Soil, 2003, 249(2):373-382
|
Abercrombie J M, Halfhill M D, Ranjan P, et al. Transcriptional responses of Arabidopsis thaliana plants to As (Ⅴ) stress[J]. BMC Plant Biology, 2008, 8:87
|
Chen J, Shiyab S, Han F X, et al. Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata[J]. Ecotoxicology, 2009, 18(1):110-121
|
Liu Y, Wang H B, Wong M H, et al. The role of arsenate reductase and superoxide dismutase in As accumulation in four Pteris species[J]. Environment International, 2009, 35(3):491-495
|
Cao X D, Ma L Q, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.)[J]. Environmental Pollution, 2004, 128(3):317-325
|
Srivastava M, Ma L Q, Singh N, et al. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic[J]. Journal of Experimental Botany, 2005, 56(415):1335-1342
|
Rahman F, Sugawara K, Huang Y, et al. Arsenic, lead and cadmium removal potential of Pteris multifida from contaminated water and soil[J]. International Journal of Phytoremediation, 2018, 20(12):1187-1193
|
Popov M, Zemanová V, Sácký J, et al. Arsenic accumulation and speciation in two cultivars of Pteris cretica L. and characterization of arsenate reductase PcACR2 and arsenite transporter PcACR3 genes in the hyperaccumulating cv. Albo-lineata[J]. Ecotoxicology and Environmental Safety, 2021, 216:112196
|
Khan M S, Zaidi A, Wani P A, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils[J]. Environmental Chemistry Letters, 2009, 7(1):1-19
|
Chen B, Zhang Y B, Rafiq M T, et al. Improvement of cadmium uptake and accumulation in Sedum alfredii by endophytic bacteria Sphingomonas SaMR12:Effects on plant growth and root exudates[J]. Chemosphere, 2014, 117:367-373
|
Pan F S, Luo S, Shen J, et al. The effects of endophytic bacterium SaMR12 on Sedum alfredii Hance metal ion uptake and the expression of three transporter family genes after cadmium exposure[J]. Environmental Science and Pollution Research International, 2017, 24(10):9350-9360
|
Zhu L J, Guan D X, Luo J, et al. Characterization of arsenic-resistant endophytic bacteria from hyperaccumulators Pteris vittata and Pteris multifida[J]. Chemosphere, 2014, 113:9-16
|
Rathinasabapathi B, Raman S B, Kertulis G, et al. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite[J]. Canadian Journal of Microbiology, 2006, 52(7):695-700
|
Liu Y, Zhu Y G, Chen B D, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L.[J]. Mycorrhiza, 2005, 15(3):187-192
|
Chien C C, Huang C H, Lin Y W. Characterization of a heavy metal translocating P-type ATPase gene from an environmental heavy metal resistance Enterobacter sp.[J]. Applied Biochemistry and Biotechnology, 2013, 169(6):1837-1846
|
廉梅花. 根际土壤中重金属的活化因素及作用机理研究[D]. 沈阳:东北大学, 2016:1-180 Lian M H. Study on the activating factors and mechanisms of heavy metals in rhizosphere soil[D]. Shenyang:Northeastern University, 2016:1
-180(in Chinese)
|
Miller R M. Biosurfactant-facilitated remediation of metal-contaminated soils[J]. Environmental Health Perspectives, 1995, 103(Suppl.1):59-62
|
Ding Y Z, Song Z G, Feng R W, et al. Interaction of organic acids and pH on multi-heavy metal extraction from alkaline and acid mine soils[J]. International Journal of Environmental Science and Technology, 2014, 11(1):33-42
|
Quartacci M F, Irtelli B, Gonnelli C, et al. Naturally-assisted metal phytoextraction by Brassica carinata:Role of root exudates[J]. Environmental Pollution, 2009, 157(10):2697-2703
|
罗庆, 孙丽娜, 胡筱敏. 镉超富集植物东南景天根系分泌物的代谢组学研究[J]. 分析化学, 2015, 43(1):7-12
Luo Q, Sun L N, Hu X M. Metabonomics study on root exudates of Cd hyperaccumulator Sedum alfredii[J]. Chinese Journal of Analytical Chemistry, 2015, 43(1):7-12(in Chinese)
|
Lessl J T, Ma L Q, Rathinasabapathi B, et al. Novel phytase from Pteris vittata resistant to arsenate, high temperature, and soil deactivation[J]. Environmental Science & Technology, 2013, 47(5):2204-2211
|
Liu X, Fu J W, Guan D X, et al. Arsenic induced phytate exudation, and promoted FeAsO4 dissolution and plant growth in As-hyperaccumulator Pteris vittata[J]. Environmental Science & Technology, 2016, 50(17):9070-9077
|
Bhargava A, Carmona F F, Bhargava M, et al. Approaches for enhanced phytoextraction of heavy metals[J]. Journal of Environmental Management, 2012, 105:103-120
|
Wang X, Ma L Q, Rathinasabapathi B, et al. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata[J]. Environmental Science & Technology, 2011, 45(22):9719-9725
|
Sundaram S, Rathinasabapathi B, Ma L Q, et al. An arsenate-activated glutaredoxin from the arsenic hyperaccumulator fern Pteris vittata L. regulates intracellular arsenite[J]. The Journal of Biological Chemistry, 2008, 283(10):6095-6101
|
Lee J, Shim D, Song W Y, et al. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells[J]. Plant Molecular Biology, 2004, 54(6):805-815
|
张星雨, 叶志彪, 张余洋. 植物响应镉胁迫的生理与分子机制研究进展[J]. 植物生理学报, 2021, 57(7):1437-1450
Zhang X Y, Ye Z B, Zhang Y Y. Advances in physiological and molecular mechanism of plant response to cadmium stress[J]. Plant Physiology Journal, 2021, 57(7):1437-1450(in Chinese)
|
王学华, 戴力. 作物根系镉滞留作用及其生理生化机制[J]. 中国农业科学, 2016, 49(22):4323-4341
Wang X H, Dai L. Immobilization effect and its physiology and biochemical mechanism of the cadmium in crop roots[J]. Scientia Agricultura Sinica, 2016, 49(22):4323-4341(in Chinese)
|
郭军康, 周冉, 任心豪, 等. 不同年限设施菜地番茄细胞壁果胶Cd累积的研究[J]. 农业环境科学学报, 2018, 37(1):45-51
Guo J K, Zhou R, Ren X H, et al. Accumulation of Cd in cell wall pectin of tomato plants grown in greenhouse soil of different planting years[J]. Journal of Agro-Environment Science, 2018, 37(1):45-51(in Chinese)
|
丁禺乔, 柳晓光. 土壤重金属污染修复技术及展望[J]. 资源节约与环保, 2021(6):77-78 Ding Y Q, Liu X G. Remediation technology and prospect of heavy metal pollution in soil[J]. Resources Economization & Environmental Protection, 2021
(6):77-78(in Chinese)
|
Suksabye P, Pimthong A, Dhurakit P, et al. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil[J]. Environmental Science and Pollution Research International, 2016, 23(2):962-973
|
Treesubsuntorn C, Dhurakit P, Khaksar G, et al. Effect of microorganisms on reducing cadmium uptake and toxicity in rice (Oryza sativa L.)[J]. Environmental Science and Pollution Research International, 2018, 25(26):25690-25701
|
杨榕, 李博文, 刘微, 等. 胶质芽孢杆菌对印度芥菜富集土壤Cd的效果[J]. 水土保持学报, 2012, 26(5):164-168
Yang R, Li B W, Liu W, et al. Effects of Bacillus mucilaginosus on sorption and accumulation for Brassica juncea with Cd in the soil[J]. Journal of Soil and Water Conservation, 2012, 26(5):164-168(in Chinese)
|
邓月强, 曹雪莹, 谭长银, 等. 巨大芽孢杆菌对伴矿景天修复镉污染农田土壤的强化作用[J]. 应用生态学报, 2020, 31(9):3111-3118
Deng Y Q, Cao X Y, Tan C Y, et al. Strengthening the effect of Bacillus megaterium on remediation of Cd-contaminated farmland soil by Sedum plumbizincicola[J]. Chinese Journal of Applied Ecology, 2020, 31(9):3111-3118(in Chinese)
|
张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L.)对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16):5805-5813
Zhang Y X, Zhou L, Xiao N C, et al. Remediation potential of B. pilosa L. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16):5805-5813(in Chinese)
|
曾东, 许振成. 抗砷菌对蜈蚣草生长及其砷吸收能力的影响[J]. 环境污染与防治, 2010, 32(5):43-46
Zeng D, Xu Z C. Effect of arsenite-resistent bacteria on growth and arsenite adsorption capacity of Pteris vittata L.[J]. Environmental Pollution & Control, 2010, 32(5):43-46(in Chinese)
|
Ma Y, Oliveira R S, Nai F J, et al. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil[J]. Journal of Environmental Management, 2015, 156:62-69
|
Baum C, Hrynkiewicz K, Leinweber P, et al. Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados)[J]. Journal of Plant Nutrition and Soil Science, 2006, 169(4):516-522
|
Wu Y J, Ma L Y, Liu Q Z, et al. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii[J]. Journal of Hazardous Materials, 2020, 395:122661
|
Wang Q, Xiong D, Zhao P, et al. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17[J]. Journal of Applied Microbiology, 2011, 111(5):1065-1074
|
Krupa P, Kozdrój J. Ectomycorrhizal fungi and associated bacteria provide protection against heavy metals in inoculated pine (Pinus sylvestris L.) seedlings[J]. Water, Air, and Soil Pollution, 2007, 182(1):83-90
|
Liang X, Chi-Quan H, Gang N, et al. Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains[J]. Pedosphere, 2014, 24(3):322-329
|
Jeong S, Moon H S, Nam K, et al. Application of phosphate-solubilizing bacteria for enhancing bioavailability and phytoextraction of cadmium (Cd) from polluted soil[J]. Chemosphere, 2012, 88(2):204-210
|
Gao Y, Miao C, Mao L, et al. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid[J]. Journal of Hazardous Materials, 2010, 181(1-3):771-777
|
Yang Q, Tu S, Wang G, et al. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L.[J]. International Journal of Phytoremediation, 2012, 14(1):89-99
|
Leung H M, Ye Z, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils[J]. Environmental Pollution, 2006, 139(1):1-8
|
杨倩. 微生物提高植物修复砷污染土壤的效果和机理研究[D]. 武汉:华中农业大学, 2009:1-98 Yang Q. The role of microorganisms in improving the phytoremediation of arsenic polluted soils and its mechanisms[D]. Wuhan:Huazhong Agricultural University, 2009:1
-98(in Chinese)
|
El Aafi N, Brhada F, Dary M, et al. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541[J]. International Journal of Phytoremediation, 2012, 14(3):261-274
|
Dong Y, Zhu Y G, Smith F A, et al. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil[J]. Environmental Pollution, 2008, 155(1):174-181
|
张帅, 方晓晴, 万敏, 等. 土壤酸胁迫对2种植物生长及镉富集的影响[J]. 安徽农业科学, 2020, 48(17):104-107
, 155 Zhang S, Fang X Q, Wan M, et al. Effects of soil acid stress on the growth and cadmium accumulation of two plants[J]. Journal of Anhui Agricultural Sciences, 2020, 48(17):104-107, 155(in Chinese)
|
于永光, 赵斌. 不同pH水平下2种菌根真菌对紫云英生长的影响及其相互作用[J]. 菌物学报, 2008, 27(2):209-216
Yu Y G, Zhao B. The interaction and effect of two species of arbuscular mycorrhizal fungi on the growth of Astragalus sinicus L. at different pH level[J]. Mycosystema, 2008, 27(2):209-216(in Chinese)
|
韦朝阳, 陈同斌. 重金属超富集植物及植物修复技术研究进展[J]. 生态学报, 2001, 21(7):1196-1203
Wei C Y, Chen T B. Hyperaccumulators and phytoremediation of heavy metal contaminated soil:A review of studies in China and abroad[J]. Acta Ecologica Sinica, 2001, 21(7):1196-1203(in Chinese)
|
徐文静, 靳晓东, 杨秋生. 植物根际微生物的影响因素研究进展[J]. 河南农业科学, 2014, 43(5):6-12
Xu W J, Jin X D, Yang Q S. Research progress on factors influencing plant rhizosphere microorganism[J]. Journal of Henan Agricultural Sciences, 2014, 43(5):6-12(in Chinese)
|
Compant S, Clément C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:Their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology and Biochemistry, 2010, 42(5):669-678
|
Chen Y X, Wang Y P, Lin Q, et al. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens[J]. Environment International, 2005, 31(6):861-866
|
国辉, 毛志泉, 刘训理. 植物与微生物互作的研究进展[J]. 中国农学通报, 2011, 27(9):28-33
Guo H, Mao Z Q, Liu X L. Research progress of interaction between plant and microorganism[J]. Chinese Agricultural Science Bulletin, 2011, 27(9):28-33(in Chinese)
|
冯洁, 陈其煐, 石磊岩. 棉花幼苗根系分泌物与枯萎病关系的研究[J]. 棉花学报, 1991, 3(1):89-96
Feng J, Chen Q Y, Shi L Y. Studies on relation between root exudates of cotton seedling and Fusarium wilt disease[J]. Cotton Science, 1991, 3(1):89-96(in Chinese)
|
袁虹霞, 李洪连, 王烨, 等. 棉花不同抗性品种根系分泌物分析及其对黄萎病菌的影响[J]. 植物病理学报, 2002, 32(2):127-131
Yuan H X, Li H L, Wang Y, et al. The root exudates of cotton cultivars with the different resistance and their effects on Verticillium dahliae[J]. Acta Phytopathologica Sinica, 2002, 32(2):127-131(in Chinese)
|
Cavalca L, Corsini A, Canzi E, et al. Rhizobacterial communities associated with spontaneous plant species in long-term arsenic contaminated soils[J]. World Journal of Microbiology & Biotechnology, 2015, 31(5):735-746
|