Thuy Pham T P, Cho C W, Yun Y S. Environmental fate and toxicity of ionic liquids:A review[J]. Water Research, 2010, 44(2):352-372
Shah K, Atkin R, Stanger R, et al. Interactions between vitrinite and inertinite-rich coals and the ionic liquid-[bmim] [Cl] [J]. Fuel, 2014, 119:214-218
Amarasekara A S, Reyes C D G. Acidic ionic liquid catalyzed liquefactions of corn cobs and switchgrass in acetone:Analysis of bio-oils using LC-MS and GC-MS[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145:104752
Pęziak-Kowalska D, Syguda A, Ławniczak Ł, et al. Hybrid electrochemical and biological treatment of herbicidal ionic liquids comprising the MCPA anion[J]. Ecotoxicology and Environmental Safety, 2019, 181:172-179
Radošević K, Cvjetko M, Kopjar N, et al.In vitro cytotoxicity assessment of imidazolium ionic liquids:Biological effects in fish channel catfish ovary (CCO) cell line[J]. Ecotoxicology and Environmental Safety, 2013, 92:112-118
Cvjetko M, Radošević K, Tomica A, et al. Cytotoxic effects of imidazolium ionic liquids on fish and human cell lines[J]. Arhiv Za Higijenu Rada i Toksikologiju, 2012, 63(1):15-20
Ranke J, M lter K, Stock F, et al. Biological effects of imidazolium ionic liquids with varying chain lengths in acuteVibrio fischeri and WST-1 cell viability assays[J]. Ecotoxicology and Environmental Safety, 2004, 58(3):396-404
Zhang C, Zhu L S, Wang J H, et al. The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2017, 140:235-240
Shao Y T, Wang J, Du Z K, et al. Toxic effect of[Omim]BF4 and[Omim]Br on antioxidant stress and oxidative damage in earthworms (Eisenia fetida)[J]. Environmental Toxicology and Pharmacology, 2018, 60:37-44
Yu M, Li S M, Li X Y, et al. Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver[J]. Ecotoxicology and Environmental Safety, 2008, 71(3):903-908
Dong M, Zhu L S, Zhu S Y, et al. Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers[J]. Chemosphere, 2013, 91(8):1107-1112
Bailey M M, Townsend M B, Jernigan P L, et al. Developmental toxicity assessment of the ionic liquid 1-butyl-3-methylimidazolium chloride in CD-1 mice[J]. Green Chemistry, 2008, 10(11):18-23
Liu P, Ding Y F, Liu H Y, et al. Toxic effects of 1-methyl-3-octylimidazolium bromide on the wheat seedlings[J]. Journal of Environmental Sciences, 2010, 22(12):1974-1979
Cornmell R J, Winder C L, Tiddy G J T, et al. Accumulation of ionic liquids inEscherichia coli cells[J]. Green Chemistry, 2008, 10(8):836-841
Hartmann D O, Shimizu K, Siopa F, et al. Plasma membrane permeabilisation by ionic liquids:A matter of charge[J]. Green Chemistry, 2015, 17(9):4587-4598
胡立新. 基于傅里叶变换红外光谱的生物毒性测试方法及咪唑类离子液体毒性作用机制研究[D]. 北京:中国科学院大学, 2018:7-8 Hu L X. Preliminary investigation into biological toxicity based on FTIR and the toxic mechanism of imidazolium based ionic liquids[D]. Beijing:University of Chinese Academy of Sciences, 2018:7 -8(in Chinese)
Li X Y, Ma J G, Wang J J. Cytotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by ionic liquid 1-methyl-3-octylimidazolium bromide[J]. Ecotoxicology and Environmental Safety, 2015, 120:342-348
Cvjetko Bubalo M, Hanousek K, Radošević K, et al. Imidiazolium based ionic liquids:Effects of different anions and alkyl chains lengths on the barley seedlings[J]. Ecotoxicology and Environmental Safety, 2014, 101:116-123
Yan F J, Zhang J, Zhang L X, et al. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells[J]. Food & Function, 2016, 7(1):425-433
Wan R Y, Xia X H, Wang P J, et al. Toxicity of imidazoles ionic liquid[C16mim]Cl to HepG2 cells[J]. Toxicology in Vitro, 2018, 52:1-7
Tot A, Vraneš M, Maksimović I, et al. The effect of imidazolium based ionic liquids on wheat and barley germination and growth:Influence of length and oxygen functionalization of alkyl side chain[J]. Ecotoxicology and Environmental Safety, 2018, 147:401-406
Younes N, Salem R, Al-Asmakh M, et al. Toxicity evaluation of selected ionic liquid compounds on embryonic development of zebrafish[J]. Ecotoxicology and Environmental Safety, 2018, 161:17-24
Takanaga H, Chaudhuri B, Frommer W B. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor[J]. Biochimica et Biophysica Acta, 2008, 1778(4):1091-1099
Furukawa F, Irachi S, Koyama M, et al. Changes in glycogen concentration and gene expression levels of glycogen-metabolizing enzymes in muscle and liver of developing Masu salmon[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2018, 225:74-82
黄熙泰, 于自然, 李翠凤. 现代生物化学[M]. 第2版. 北京:化学工业出版社, 2005:311-338
Bian C C, Huang X C, Hu Z C, et al. Glycogen synthase kinase-3β (GSK-3β) of grass carp (Ctenopharyngodon idella):Synteny, structure, tissue distribution and expression in oleic acid (OA)-induced adipocytes and hepatocytes[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2019, 241:110391
Fang G X, Zhang P L, Liu J F, et al. Inhibition of GSK-3β activity suppresses HCC malignant phenotype by inhibiting glycolysis via activating AMPK/mTOR signaling[J]. Cancer Letters, 2019, 463:11-26
Okar D A, Manzano A, Navarro-Sabatè A, et al. PFK-2/FBPase-2:Maker and breaker of the essential biofactor fructose-2, 6-bisphosphate[J]. Trends in Biochemical Sciences, 2001, 26(1):30-35