[1] |
邵宇航, 楼少华, 唐颖栋, 等. 深圳市茅洲河流域某小微水体治理方法与实践[J]. 中国给水排水, 2023, 39(14): 134-140.
|
[2] |
陈成, 杨正健, 王从锋, 等. 小微黑臭水体修复过程中温室气体排放特征[J]. 中国环境科学, 2023, 43(8): 4211-4218. doi: 10.3969/j.issn.1000-6923.2023.08.038
|
[3] |
杨垒, 李坤, 刘如. 强化耦合生物膜技术在河道污水中的应用[J]. 资源节约与环保, 2023(1): 71-74. doi: 10.3969/j.issn.1673-2251.2023.01.018
|
[4] |
薛同站, 李卫华, 黄健, 等. 膜曝气生物膜技术(MABR)去除河水中污染物的研究[J]. 生态与农村环境学报, 2022, 38(4): 531-537.
|
[5] |
王荣昌, 文湘华, 景永强, 等. 悬浮载体生物膜反应器修复受污染河水试验研究[J]. 环境科学, 2004(S1): 67-69.
|
[6] |
吕鹏翼, 罗金学, 韩振飞, 等. 生物膜技术在污染河流原位修复中的应用及研究进展[J]. 水处理技术, 2017, 43(11): 1-7.
|
[7] |
SALLY H, A C R, ROCHELLE P, et al. Influence of substratum on the variability of benthic biofilm stable isotope signatures: implications for energy flow to a primary consumer[J]. Hydrobiologia, 2011, 664(1): 135-146. doi: 10.1007/s10750-010-0593-0
|
[8] |
CHAORAN L, LINGZHAN M, M A T, et al. Transformation of biofilm to carbon sinks after prolonged droughts linked with algal biodiversity change[J]. Environmental Science & Technology, 2023, 57(41): 15487-15498.
|
[9] |
ZHANG L, HUANG X, ChEN W, et al. Microalgae-assisted heterotrophic nitrification-aerobic denitrification process for cost-effective nitrogen and phosphorus removal from high-salinity wastewater: Performance, mechanism, and bacterial community[J]. Bioresource Technology, 2023, 390: 129901. doi: 10.1016/j.biortech.2023.129901
|
[10] |
CHENG H, YOU J, MA S, et al. 2-Hydroxy-1, 4-Naphthoquinone: A promising redox mediator for minimizing dissolved organic nitrogen and eutrophication effects of wastewater effluent[J]. Environmental Science & Technology, 2024, 58(6): 2870-2880.
|
[11] |
ZHANG L, FU G, ZHANG Z. Long-term stable and energy-neutral mixed biofilm electrode for complete nitrogen removal from high-salinity wastewater: Mechanism and microbial community[J]. Bioresource Technology, 2020, 313: 123660. doi: 10.1016/j.biortech.2020.123660
|
[12] |
WANG Z, RUAN X, LI R, et al. Microbial interaction patterns and nitrogen cycling regularities in lake sediments under different trophic conditions[J]. Science of the Total Environment, 2024, 907: 167926. doi: 10.1016/j.scitotenv.2023.167926
|
[13] |
ZHANG X, CHEN D, HOU X, et al. Nitrification-denitrification co-metabolism in an algal-bacterial aggregates system for simultaneous pyridine and nitrogen removal[J]. Journal of Hazardous Materials, 2023, 460: 132390. doi: 10.1016/j.jhazmat.2023.132390
|
[14] |
LIU J, WU Y, WU C, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: A review[J]. Bioresource Technology, 2017, 241: 1127-1137. doi: 10.1016/j.biortech.2017.06.054
|
[15] |
FAN J, YUAN W, ZHANG X, et al. Oxygen affinity and light intensity induced robust phosphorus removal and fragile ammonia removal in a non-aerated bacteria-algae system[J]. Science of the Total Environment, 2024, 912: 169013. doi: 10.1016/j.scitotenv.2023.169013
|
[16] |
WANG J, LI Z, WANG Q, et al. Use of photo-driven algal-bacterial aerobic granular sludge system to close carbon cycle in biological nutrients removal and sludge anaerobic digestion units in wastewater treatment plants[J]. Chemical Engineering Journal, 2023, 475: 145999. doi: 10.1016/j.cej.2023.145999
|
[17] |
YANG J, FENG L, PI S, et al. A critical review of aerobic denitrification: Insights into the intracellular electron transfer[J]. Science of the Total Environment, 2020, 731: 139080. doi: 10.1016/j.scitotenv.2020.139080
|
[18] |
ZHANG Q, ZHANG C, ZHU Y, et al. Effect of bacteria-to-algae volume ratio on treatment performance and microbial community of a novel heterotrophic nitrification-aerobic denitrification bacteria-chlorella symbiotic system[J]. Bioresource Technology, 2021, 342: 126025. doi: 10.1016/j.biortech.2021.126025
|
[19] |
胡劲涛, 信欣. 基于电化学系统内Feammox/NDFO 耦合工艺脱氮效能和机理研究[J]. 中国环境科学, 2024, 44(9): 4958-4967. doi: 10.3969/j.issn.1000-6923.2024.09.023
|
[20] |
ZHANG L, HUANG X, FU G, et al. Aerobic electrotrophic denitrification coupled with biologically induced phosphate precipitation for nitrogen and phosphorus removal from high-salinity wastewater: Performance, mechanism, and microbial community[J]. Bioresource Technology, 2023, 372: 128696. doi: 10.1016/j.biortech.2023.128696
|
[21] |
MIAO L, WANG C, ADYEL T M, et al. Periphytic biofilm formation on natural and artificial substrates: Comparison of microbial compositions, interactions, and functions[J]. Frontiers in Microbiology, 2021, 12: 1917.
|
[22] |
WEI L, HU Y, XUE Y, et al. Granular sludge characterization and microbial response in a hydroxyapatite (HAP)- anammox coupled process at different nitrogen loading rates[J]. Journal of Water Process Engineering, 2024, 64: 105582. doi: 10.1016/j.jwpe.2024.105582
|
[23] |
ACINAS S G, HAVERKAMP T H A, HUISMAN J, et al. Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria)[J]. The ISME Journal, 2009, 3(1): 31-46. doi: 10.1038/ismej.2008.78
|
[24] |
KHAN S, DAS P, KASAK P, et al. Production of sustainable thermoplastic composites from waste nitrogen fertilizer-grown marine filamentous cyanobacterium Geitlerinema sp[J]. Journal of Environmental Management, 2024, 366: 121931. doi: 10.1016/j.jenvman.2024.121931
|
[25] |
LIN L, XU K, SHEN D, et al. Antifungal weapons of Lysobacter, a mighty biocontrol agent[J]. Environmental Microbiology, 2021, 23(10): 5704-5715. doi: 10.1111/1462-2920.15674
|
[26] |
ZHAO Z, SUN C, LI Y, et al. Upgrading current method of anaerobic co-digestion of waste activated sludge for high-efficiency methanogenesis: Establishing direct interspecies electron transfer via ethanol-type fermentation[J]. Renewable Energy, 2020, 148: 523-533. doi: 10.1016/j.renene.2019.10.058
|
[27] |
LI S, ZHANG H, ZHANG S, et al. Stress responses of partial denitrification system under long-term ciprofloxacin exposure in an anaerobic sequencing batch reactor[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110141. doi: 10.1016/j.jece.2023.110141
|
[28] |
PISHGAR R, DOMINIC J A, SHENG Z, et al. Denitrification performance and microbial versatility in response to different selection pressures[J]. Bioresource Technology, 2019, 281: 72-83. doi: 10.1016/j.biortech.2019.02.061
|
[29] |
ZHAO Y, SONG X, CAO X, et al. Modified solid carbon sources with nitrate adsorption capability combined with nZVI improve the denitrification performance of constructed wetlands[J]. Bioresource Technology, 2019, 294: 122189. doi: 10.1016/j.biortech.2019.122189
|
[30] |
XU Y, LI Q, TANG Y, et al. Electrocatalytic denitrification biofilter for advanced purification of chlorophenols via ceramsite-based Ti/SnO2-Sb particle electrode: Performance, microbial community structure and mechanism[J]. Environmental Pollution, 2024, 346: 123594. doi: 10.1016/j.envpol.2024.123594
|
[31] |
XV K, ZHANG S, PANG A, et al. White feces syndrome is closely related with hypoimmunity and dysbiosis in Litopenaeus vannamei[J]. Aquaculture Reports, 2024, 38: 102329. doi: 10.1016/j.aqrep.2024.102329
|
[32] |
JIN L, CUI C, ZHANG C, et al. New multidrug efflux systems in a microcystin-degrading bacterium blastomonas fulva and its genomic feature[J]. International Journal of Molecular Sciences, 2022, 23(18): 10856. doi: 10.3390/ijms231810856
|
[33] |
JIANG Y, FANG Y, LIU Y, et al. Community succession during the preventive control of cyanobacterial bloom by hydrogen peroxide in an aquatic microcosm[J]. Ecotoxicology and Environmental Safety, 2022, 237: 113546. doi: 10.1016/j.ecoenv.2022.113546
|
[34] |
SUN Z, LI Y, LIU J, et al. Performance and mechanism of the synergistic hexavalent chromium and nitrogen removal in a MABR system[J]. Chemical Engineering Journal, 2023, 478: 147433. doi: 10.1016/j.cej.2023.147433
|
[35] |
HU J, LI T, ZHAO Y, et al. A novel in-situ enhancement strategy of denitrification biofilter for simultaneous removal of steroid estrogens and total nitrogen from low C/N wastewater[J]. Chemical Engineering Journal, 2023, 452: 138896. doi: 10.1016/j.cej.2022.138896
|
[36] |
JIANG Z, YANG S, PANG Q, et al. Biochar improved soil health and mitigated greenhouse gas emission from controlled irrigation paddy field: Insights into microbial diversity[J]. Journal of Cleaner Production, 2021, 318: 128595. doi: 10.1016/j.jclepro.2021.128595
|
[37] |
CHENG Q, LIU Z, HUANG Y, et al. Advanced nitrogen removal performance and microbial community structure of a lab-scale denitrifying filter with in-situ formation of biogenic manganese oxides[J]. Journal of Environmental Management, 2023, 331: 117299. doi: 10.1016/j.jenvman.2023.117299
|
[38] |
HEI S, XU H, LIU Y, et al. Redox environment inducing strategy for enhancing biological phosphorus removal in a full-scale municipal wastewater treatment plant[J]. Journal of Cleaner Production, 2022, 376: 134237. doi: 10.1016/j.jclepro.2022.134237
|
[39] |
HU T, XIONG J, ZHOU J, et al. Nitrogen removal performance of bioretention cells under freeze-thaw cycles: Effects of filler structure and microbial community[J]. Journal of Environmental Management, 2024, 369: 122380. doi: 10.1016/j.jenvman.2024.122380
|
[40] |
BI R, XU X, WANG B, et al. Evidence of complete ammonia-oxidizing microbial communities and their contribution to N2O emissions in typical vegetable fields across China[J]. Soil Biology and Biochemistry, 2024, 194: 109423. doi: 10.1016/j.soilbio.2024.109423
|
[41] |
YANG X, LIAO Y, ZENG M, et al. Nitrite accumulation performance and microbial community of algal-bacterial symbiotic system constructed by Chlorella sp. And Navicula sp.[J]. Bioresource Technology, 2024, 399: 130638. doi: 10.1016/j.biortech.2024.130638
|
[42] |
LIANG D, GUO W, LI D, et al. Enhanced aerobic granulation for treating low-strength wastewater in an anaerobic-aerobic-anoxic sequencing batch reactor by selecting slow-growing organisms and adding carriers[J]. Environmental Research, 2022, 205: 112547. doi: 10.1016/j.envres.2021.112547
|
[43] |
TAO Z, JING Z, TAO M, et al. A novel filter-type constructed wetland for secondary effluent treatment: Performance and its microbial mechanism[J]. Bioresource Technology, 2023, 380: 129075. doi: 10.1016/j.biortech.2023.129075
|
[44] |
ILICIC D, GROSSART H-P. Basal parasitic fungi in marine food webs-A mystery yet to unravel[J]. Journal of Fungi, 2022, 8(2): 114. doi: 10.3390/jof8020114
|
[45] |
CHEN H, SHI W. Opening up the N2O-producing fungal community in an agricultural soil with a cytochrome p450nor-based primer tool[J]. Applied Soil Ecology, 2017, 119: 392-395. doi: 10.1016/j.apsoil.2017.07.022
|
[46] |
NORDIO R, BELACHQER-El ATTAR S, CLAGNAN E, et al. Exploring microbial growth dynamics in a pilot-scale microalgae raceway fed with urban wastewater: Insights into the effect of operational variables[J]. Journal of Environmental Management, 2024, 369: 122385. doi: 10.1016/j.jenvman.2024.122385
|
[47] |
ZHANG Y, DAI S, HUANG X, et al. pH-induced changes in fungal abundance and composition affects soil heterotrophic nitrification after 30 days of artificial pH manipulation[J]. Geoderma, 2020, 366: 114255. doi: 10.1016/j.geoderma.2020.114255
|
[48] |
LI J, XIAO X, GUO L, et al. A novel qPCR-based method to quantify seven phyla of common algae in freshwater and its application in water sources[J]. Science of The Total Environment, 2022, 823: 153340. doi: 10.1016/j.scitotenv.2022.153340
|
[49] |
DING X, LIU J, LIU W, et al. Phytoplankton communities miniaturization driven by extreme weather in subtropical estuary under climate changes[J]. Water Research, 2023, 245: 120588. doi: 10.1016/j.watres.2023.120588
|
[50] |
JANKOWSKA K, ŁUKOMSKA-KOWALCZYK M, MILANOWSKI R, et al. Biodiversity of autotrophic euglenids based on the group specific DNA metabarcoding approach[J]. Protist, 2024, 175(3): 126024. doi: 10.1016/j.protis.2024.126024
|
[51] |
DAYANA PRIYADHARSHINI S, SURESH BABU P, MANIKANDAN S, et al. Phycoremediation of wastewater for pollutant removal: A green approach to environmental protection and long-term remediation[J]. Environmental Pollution, 2021, 290: 117989. doi: 10.1016/j.envpol.2021.117989
|