[1] |
United Nations Environment Programme. Global mercury assessment 2013: sources, emissions, releases and environmental transport[R]. Geneva: 2013.
|
[2] |
WU Q, WANG S, LI G, et al. Temporal trend and spatial distribution of speciated atmospheric mercury emissions in China during 1978-2014[J], Environmental Science & Technology, 2016, 50(24): 13428-13435.
|
[3] |
LIU K, WU Q, WANG S, et al. Highly resolved inventory of mercury release to water from anthropogenic sources in China[J], Environmental Science & Technology, 2021, 55(20): 13860-13868.
|
[4] |
ZHAO S, QU Z, YAN N, et al. Ag-modified AgI–TiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury[J]. RSC Advances, 2015, 5(39): 30841-30850. doi: 10.1039/C5RA00838G
|
[5] |
杨子文, 佟莉, 左朋莱, 等. 不同烟气组分对Cu2O改性V2O5-MoO3/TiO2脱硝催化剂汞氧化性能的影响[J]. 环境工程学报, 2022, 16(9): 2911-2920. doi: 10.12030/j.cjee.202205121
|
[6] |
李述贤, 郑旭东, 龚建军, 等. 利用氯化锌和硫改性玉米秸秆生物炭稳定汞污染土壤[J]. 环境工程学报, 2021, 15(4): 1403-1408. doi: 10.12030/j.cjee.202008083
|
[7] |
Chang H, Wu Q, Zhang T, et al. Design strategies for CeO2-MoO3 catalysts for deNOx and Hg0 oxidation in the presence of HCl: the significance of the Surface acid-base properties[J]. Environmental Science & Technology, 2015, 49(20): 12388-12394.
|
[8] |
LI G, WANG S, WU Q, et al. Exploration of reaction mechanism between acid gases and elemental mercury on the CeO2WO3TiO2 catalyst via In situ DRIFTS[J]. Fuel, 2019, 239(1): 162-172.
|
[9] |
LI J, WU Q, WANG Y, et al. Improvement of NH3 resistance over CuO/TiO2 catalysts for elemental mercury oxidation in a wide temperature range[J]. Catalysis Today, 2021, 376(1): 276-284.
|
[10] |
HE C, SHEN B, CHI G, et al. Elemental mercury removal by CeO2/TiO2-PILCs under simulated coal-fired flue gas[J]. Chemical Engineering Journal, 2016, 300(1): 1-8.
|
[11] |
吴响, 段钰锋, 姚婷, 等. Ce-Mn/TiO2吸附剂的脱汞性能及SO2特性[J]. 中国环境科学, 2019, 39(6): 2336-2343. doi: 10.3969/j.issn.1000-6923.2019.06.013
|
[12] |
谭增强, 牛国平, 陈晓文, 等. Mn-Ce/分子筛的脱汞特性研究[J]. 环境科学, 2015, 36(6): 1983-1988.
|
[13] |
LI G, SHAO S, WANG S, et al. Flame synthesized nanoscale catalyst (CuCeWTi) with excellent Hg0 oxidation activity and hydrothermal resistance[J]. Journal of Hazardous Materials, 2021, 408(1): 124427-124435.
|
[14] |
LI H, WU C, LI Y, et al. Impact of SO2 on elemental mercury oxidation over CeO2–TiO2 catalyst[J]. Chemical Engineering Journal, 2013, 219(1): 319-326.
|
[15] |
LV Q, CAI M, WANG C, et al. Investigation on elemental mercury removal and antideactivation performance of modified SCR catalysts[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(4): 1-14.
|
[16] |
XU L, WANG C, CHANG H, et al. New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-Temperature NH3–SCR[J]. Environmental Science & Technology, 2018, 52(12): 7064-7071.
|
[17] |
MICHALOW K, LU Y, KOWALSKI K, et al. Flame-made WO3/CeOx-TiO2 catalysts for selective catalytic reduction of NOx by NH3[J]. ACS Catalysis, 2015, 5(10): 5657-5672. doi: 10.1021/acscatal.5b01580
|
[18] |
JOHNSTON A, SENANAYAKE S, PLATA J, et al. Nature of the Mixed-oxide interface in ceria–titania catalysts: Clusters, chains, and nanoparticles[J]. The Journal of Physical Chemistry C, 2013, 117(28): 14463-14471. doi: 10.1021/jp3125268
|
[19] |
WU J, SU T, JIANG Y, et al. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3 , CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde[J]. Applied Surface Science, 2017, 412(7): 290-305.
|
[20] |
TADA S, SHIMIZU T, KAMEYAMA H, et al. Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures[J]. International Journal of Hydrogen Energy, 2012, 37(7): 5527-5531. doi: 10.1016/j.ijhydene.2011.12.122
|
[21] |
WITOON T, KACHABAN N, DONPHAI W, et al. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts[J]. Energy Conversion and Management, 2016, 118: 21-31. doi: 10.1016/j.enconman.2016.03.075
|
[22] |
JANGJOU Y, ALI M, CHANG Q, et al. Effect of SO2 on NH3 oxidation over a Cu-SAPO-34 SCR catalyst[J]. Catalysis Science & Technology, 2016, 6(8): 2679-2685.
|
[23] |
WATANABE S, MA X and SONG C. Characterization of structural and surface properties of nanocrystalline TiO2−CeO2 mixed oxides by XRD, XPS, TPR and TPD[J]. The Journal of Physical Chemistry C, 2009, 113(32): 14249-14257. doi: 10.1021/jp8110309
|
[24] |
HE C, SHEN B and LI F. Effects of flue gas components on removal of elemental mercury over Ce-MnO x/Ti-PILCs[J]. Journal of Hazardous Materials, 2016, 304(1): 10-17.
|
[25] |
CHEN W, PEI Y, HUANG W, et al. Novel effective catalyst for elemental mercury removal from coal-fired flue gas and the mechanism investigation[J]. Environmental Science & Technology, 2016, 50(5): 2564-2572.
|
[26] |
CHEN C, JIA W, LIU S, et al. Simultaneous NO removal and Hg0 oxidation over CuO doped V2O5-WO3/TiO2 catalysts in simulated coal-fired flue gas[J]. Energy & Fuels, 2018, 32(6): 7025-7034.
|