[1] BIN DARWISH N, KURDI A, ALSHIHRI S, et al. Organic heterocyclic-based colorimetric and fluorimetric chemosensors for the detection of different analytes: A review (from 2015 to 2022)[J]. Materials Today Chemistry, 2023, 27: 101347. doi: 10.1016/j.mtchem.2022.101347
[2] ZOU Y, ZHANG Y, LIU X, et al. Research progress of benzothiazole and benzoxazole derivatives in the discovery of agricultural chemicals[J]. International Journal of Molecular Sciences, 2023, 24(13): 10807. doi: 10.3390/ijms241310807
[3] LAI W W P, LIN J C, LI M H. Degradation of benzothiazole by the UV/persulfate process: Degradation kinetics, mechanism and toxicity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 436: 114355. doi: 10.1016/j.jphotochem.2022.114355
[4] ZHANG T, CHEN Y, LEIKNES T. Oxidation of refractory benzothiazoles with PMS/CuFe2O4: Kinetics and transformation intermediates[J]. Environmental Science & Technology, 2016, 50(11): 5864-73.
[5] ZHANG H, XU H, XIA M, et al. The adsorption and mechanism of benzothiazole and 2-hydroxybenzothiazole onto a novel ampholytic surfactant modified montmorillonite: Experimental and theoretical study[J]. Advanced Powder Technology, 2021, 32(4): 1219-32. doi: 10.1016/j.apt.2021.02.022
[6] KARTHIKRAJ R, KANNAN K. Mass loading and removal of benzotriazoles, benzothiazoles, benzophenones, and bisphenols in Indian sewage treatment plants[J]. Chemosphere, 2017, 181: 216-23. doi: 10.1016/j.chemosphere.2017.04.075
[7] NI H-G, LU F-H, LUO X-L, et al. Occurrence, phase distribution, and mass loadings of benzothiazoles in riverine runoff of the Pearl River Delta, China[J]. Environmental Science & Technology, 2008, 42(6): 1892-7.
[8] DSIKOWITZKY L, NORDHAUS I, SUJATHA C H, et al. A combined chemical and biological assessment of industrial contamination in an estuarine system in Kerala, India[J]. Science of the Total Environment, 2014, 485-486: 348-62. doi: 10.1016/j.scitotenv.2014.03.034
[9] WANG L, ZHANG J, SUN H, et al. Widespread occurrence of benzotriazoles and benzothiazoles in tap water: Influencing factors and contribution to human exposure[J]. Environmental Science & Technology, 2016, 50(5): 2709-17.
[10] KONG L, KADOKAMI K, WANG S, et al. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China[J]. Chemosphere, 2015, 122: 125-30. doi: 10.1016/j.chemosphere.2014.11.025
[11] ZHANG R, ZHAO S, LIU X, et al. Aquatic environmental fates and risks of benzotriazoles, benzothiazoles, and p-phenylenediamines in a catchment providing water to a megacity of China[J]. Environmental Research, 2023, 216: 114721. doi: 10.1016/j.envres.2022.114721
[12] ZHANG H-Y, HUANG Z, LIU Y-H, et al. Occurrence and risks of 23 tire additives and their transformation products in an urban water system[J]. Environment International, 2023, 171: 107715. doi: 10.1016/j.envint.2022.107715
[13] KRAGULJ M, TRICKOVIC J, DALMACIJA B, et al. Sorption of benzothiazoles onto sandy aquifer material under equilibrium and nonequlibrium conditions[J]. Journal of the Serbian Chemical Society, 2014, 79(1): 89-100. doi: 10.2298/JSC130115063K
[14] KRAINARA S, SURARAKSA B, PROMMEENATE P, et al. Enrichment and characterization of bacterial consortia for degrading 2-mercaptobenzothiazole in rubber industrial wastewater[J]. Journal of Hazardous Materials, 2020, 400: 123291. doi: 10.1016/j.jhazmat.2020.123291
[15] 其布日, 徐淼鑫, 于博明, 等. 活化过硫酸盐对2-巯基苯并噻唑污染含水层的氧化修复效果与机理[J]. 环境科学学报, 2023, 43(5): 196-205.
[16] HOU C, ZHAO J, ZHANG Y, et al. Enhanced simultaneous removal of cadmium, lead, and acetochlor in hyporheic zones with calcium peroxide coupled with zero-valent iron: Mechanisms and application[J]. Chemical Engineering Journal, 2022, 427: 130900. doi: 10.1016/j.cej.2021.130900
[17] MARTINS R C, LOPES D V, QUINA M J, et al. Treatment improvement of urban landfill leachates by Fenton-like process using ZVI[J]. Chemical Engineering Journal, 2012, 192: 219-25. doi: 10.1016/j.cej.2012.03.053
[18] QIAN Y, ZHOU X, ZHANG Y, et al. Performance of α-methylnaphthalene degradation by dual oxidant of persulfate/calcium peroxide: Implication for ISCO[J]. Chemical Engineering Journal, 2015, 279: 538-46. doi: 10.1016/j.cej.2015.05.053
[19] MOSMERI H, GHOLAMI F, SHAVANDI M, et al. Bioremediation of benzene-contaminated groundwater by calcium peroxide (CaO2) nanoparticles: Continuous-flow and biodiversity studies[J]. Journal of Hazardous Materials, 2019, 371: 183-90. doi: 10.1016/j.jhazmat.2019.02.071
[20] MOSMERI H, ALAIE E, SHAVANDI M, et al. Bioremediation of benzene from groundwater by calcium peroxide (CaO2) nanoparticles encapsulated in sodium alginate[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 299-306. doi: 10.1016/j.jtice.2017.06.020
[21] QIAN Y, ZHANG J, ZHANG Y, et al. Degradation of 2, 4-dichlorophenol by nanoscale calcium peroxide: Implication for groundwater remediation[J]. Separation and Purification Technology, 2016, 166: 222-9. doi: 10.1016/j.seppur.2016.04.010
[22] WANG K, MA E, CUI H, et al. Bioinspired self-propelled micromotors with improved transport efficiency in the subsurface environment for soil decontamination[J] Advanced Functional Materials, 2023, 33(52): 2307632.
[23] WANG H, ZHAO Y, SU Y, et al. Fenton-like degradation of 2, 4-dichlorophenol using calcium peroxide particles: performance and mechanisms[J]. RSC Advances, 2017, 7(8): 4563-71. doi: 10.1039/C6RA26754H
[24] NEYENS E, BAEYENS J. A review of classic Fenton’s peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003, 98(1-3): 33-50. doi: 10.1016/S0304-3894(02)00282-0
[25] AN Z, SUN J, HAN D, et al. Effect of pH on ·OH-induced degradation progress of syringol/syringaldehyde and health effect[J]. Chemosphere, 2020, 255: 126893. doi: 10.1016/j.chemosphere.2020.126893
[26] YU Q, FENG L, CHAI X, et al. Enhanced surface Fenton degradation of BPA in soil with a high pH[J]. Chemosphere, 2019, 220: 335-43. doi: 10.1016/j.chemosphere.2018.12.141
[27] SHI Y, HONG S, LI R, et al. Insight on the heterogeneously activated H2O2 with goethite under visible light for cefradine degradation: pH dependence and photoassisted effect[J]. Chemosphere, 2023, 310: 136799. doi: 10.1016/j.chemosphere.2022.136799
[28] SHIMIZU A, TOKUMURA M, NAKAJIMA K, et al. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: Roles of decomposition by the Fenton reaction and adsorption/precipitation[J]. Journal of Hazardous Materials, 2012, 201-202: 60-7. doi: 10.1016/j.jhazmat.2011.11.009
[29] QIAN Y, ZHOU X, ZHANG Y, et al. Performance and properties of nanoscale calcium peroxide for toluene removal[J]. Chemosphere, 2013, 91(5): 717-23. doi: 10.1016/j.chemosphere.2013.01.049
[30] WANG H, ZHAO Y, LI T, et al. Properties of calcium peroxide for release of hydrogen peroxide and oxygen: A kinetics study[J]. Chemical Engineering Journal, 2016, 303: 450-7. doi: 10.1016/j.cej.2016.05.123
[31] PLAKAS K V, MANTZA A, SKLARI S D, et al. Heterogeneous Fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane[J]. Chemical Engineering Journal, 2019, 373: 700-8. doi: 10.1016/j.cej.2019.05.092
[32] CHENG X, LIANG L, YE J, et al. Influence and mechanism of water matrices on H2O2-based Fenton-like oxidation processes: A review[J]. Science of the Total Environment, 2023, 888: 164086. doi: 10.1016/j.scitotenv.2023.164086
[33] CHEN Y, SHI Y, WAN D, et al. Degradation of bisphenol A by iron-carbon composites derived from spent bleaching earth[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639: 128376. doi: 10.1016/j.colsurfa.2022.128376
[34] JAWAD A, LU X, CHEN Z, et al. Degradation of chlorophenols by supported Co–Mg–Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide[J]. Journal of Physical Chemistry A, 2014, 118(43): 10028-35. doi: 10.1021/jp5085313
[35] NIE X, LI G, LI S, et al. Highly efficient adsorption and catalytic degradation of ciprofloxacin by a novel heterogeneous Fenton catalyst of hexapod-like pyrite nanosheets mineral clusters[J]. Applied Catalysis B: Environmental, 2022, 300: 120734. doi: 10.1016/j.apcatb.2021.120734
[36] WU D, KAN H, ZHANG Y, et al. Pyrene contaminated soil remediation using microwave/magnetite activated persulfate oxidation[J]. Chemosphere, 2022, 286: 131787. doi: 10.1016/j.chemosphere.2021.131787
[37] LI D, FENG Z, ZHOU B, et al. Impact of water matrices on oxidation effects and mechanisms of pharmaceuticals by ultraviolet-based advanced oxidation technologies: A review[J]. Science of the Total Environment, 2022, 844: 157162. doi: 10.1016/j.scitotenv.2022.157162
[38] LI L, LIANG M, HUANG J, et al. Fe and Cu co-doped graphitic carbon nitride as an eco-friendly photo-assisted catalyst for aniline degradation[J]. Environmental Science and Pollution Research, 2020, 27(23): 29391-407. doi: 10.1007/s11356-020-08148-x
[39] LI N, LI R, ZHAO J, et al. Multi-interface Mn3O4@ZnO/TiO2 with controllable charge transfer routes for highly selective denitrification under ultrasonic-assisted visible light photocatalysis[J]. Chemical Engineering Journal, 2020, 394: 124997. doi: 10.1016/j.cej.2020.124997
[40] VIONE D. A model assessment of the role played by the carbonate (CO3) and dibromide (Br2) radicals in the photodegradation of glutathione in sunlit fresh- and salt-waters[J]. Chemosphere, 2018, 209: 401-10. doi: 10.1016/j.chemosphere.2018.06.066
[41] JAWAD A, CHEN Z, YIN G. Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment[J]. Chinese Journal of Catalysis, 2016, 37(6): 810-25. doi: 10.1016/S1872-2067(15)61100-7
[42] ZHOU L, SONG W, CHEN Z, et al. Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst[J]. Environmental Science & Technology, 2013, 47(8): 3833-9.
[43] 刘晓丹, 何雅莉, 徐从斌, 等. 多硫化物原位修复地下水中六价铬污染柱实验模拟[J]. 环境工程学报, 2020, 14(9): 2560-7. doi: 10.12030/j.cjee.202001067
[44] LIU X, DING J, REN N, et al. The detoxification and degradation of benzothiazole from the wastewater in microbial electrolysis cells[J]. International Journal of Environmental Research and Public Health, 2016, 13(12): 1259. doi: 10.3390/ijerph13121259
[45] XUE Y, GU X, LU S, et al. The destruction of benzene by calcium peroxide activated with Fe(II) in water[J]. Chemical Engineering Journal, 2016, 302: 187-93. doi: 10.1016/j.cej.2016.05.016
[46] CHENG D, NEUMANN A, YUAN S, et al. Oxidative Degradation of Organic Contaminants by FeS in the Presence of O2[J]. Environmental Science & Technology, 2020, 54(7): 4091-101.