[1] 翟明国, 胡波. 矿产资源国家安全、国际争夺与国家战略之思考[J]. 地球科学与环境学报, 2021, 43(1): 1-11.
[2] 张照志, 潘昭帅, 李厚民, 等. 中国矿产资源国情调查评价历史回顾及对推动国民经济发展的作用[J]. 地质与勘探, 2023, 59(1): 188-210. doi: 10.12134/j.dzykt.2023.01.016
[3] ZHANG J W, ZHANG J L, DENG Y R, et al. Quantitative evaluation of ecological and environmental impacts caused by future mining[J]. Ore Geology Reviews, 2023, 162: 105672. doi: 10.1016/j.oregeorev.2023.105672
[4] GITARI W M, THOBAKGALE R, AKINYEMI S A. Mobility and attenuation dynamics of potentially toxic chemical species at an abandoned copper mine tailings dump[J]. Minerals, 2018, 8(2): 64. doi: 10.3390/min8020064
[5] 潘峰岗. 浅谈铜矿开采中常见的选矿工艺及其发展趋势[J]. 中国金属通报, 2019(5): 39-40. doi: 10.3969/j.issn.1672-1667.2019.05.026
[6] SHI Y F, ZANG Y F, YANG H H, et al. Biochar enhanced phytostabilization of heavy metal contaminated mine tailings: A review[J]. Frontiers in Environmental Science, 2022, 10: 13.
[7] 安如意, 王辉, 李晟洲, 等. “双碳”背景下铁尾矿库生态修复技术方向与策略[J]. 有色金属(矿山部分), 2022, 74(6): 82-91.
[8] 吴子剑, 陈明利, 付新喜, 等. 锰尾矿区有机菌肥-速生树种的生态修复效应[J]. 中国环境科学, 2019, 39(12): 5219-5227.
[9] 曾瑞垠, 祝新友, 张雄, 等. 海相砂岩型铜矿研究进展及若干问题—以中非加丹加铜矿和云南东川铜矿对比研究为例[J]. 地质通报, 2020, 39(10): 1608-1624. doi: 10.12097/j.issn.1671-2552.2020.10.012
[10] 吴俭. 酒石酸等5种有机酸对镉锌、镉镍污染土壤清洗效果与影响因素研究[D]. 广州: 华南理工大学, 2015.
[11] 林益超. 高海拔铜矿区尾矿土壤化及生态修复先锋植物筛选研究[D]. 昆明: 昆明理工大学, 2023.
[12] 吴少杰, 黑笑涵. 测定植物样品重金属含量的火焰原子吸收法[J]. 实验科学与技术, 2009, 7(4): 25-26+125.
[13] MSIMBIRA L A, SMITH D L. The roles of plant growth promoting microbes in enhancing plant tolerance to acidity and alkalinity stresses[J]. Frontiers in Sustainable Food Systems, 2020, 4: 106. doi: 10.3389/fsufs.2020.00106
[14] PENN C J, CAMBERATO J J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants[J]. Agriculture-Basel, 2019, 9(6): 120. doi: 10.3390/agriculture9060120
[15] HUANG L H, LIU X, WANG Z C, et al. Interactive effects of pH, EC and nitrogen on yields and nutrient absorption of rice (Oryza sativa L. )[J]. Agricultural Water Management, 2017, 194: 48-57. doi: 10.1016/j.agwat.2017.08.012
[16] LAWRENCE C, HARDEN J, MAHER K. Modeling the influence of organic acids on soil weathering[J]. Geochimica Et Cosmochimica Acta, 2014, 139: 487-507. doi: 10.1016/j.gca.2014.05.003
[17] TSAI H H, SCHMIDT W. The enigma of environmental pH sensing in plants[J]. Nature Plants, 2021, 7(2): 106-115. doi: 10.1038/s41477-020-00831-8
[18] 肖扬, 黄立华, 杨易, 等. 长期不同培肥对苏打盐碱地稻田土壤盐碱指标和养分含量的影响[J]. 农业资源与环境学报, 2023, 40(1): 126-134.
[19] 李思邈, 庞佳音, 方香玲. 氮磷钾营养影响植物根部病害的研究进展[J]. 植物生理学报, 2023, 59(11): 2011-2017.
[20] KONG X S, JIA Y Y, SONG F Q, et al. Insight into litter decomposition driven by nutrient demands of symbiosis system through the hypha bridge of arbuscular mycorrhizal fungi[J]. Environmental Science and Pollution Research, 2018, 25(6): 5369-5378. doi: 10.1007/s11356-017-0877-2
[21] 王伟, 李佳, 刘金淑, 等. 硅酸盐细菌菌株的分离及其解钾解硅活性初探[J]. 安徽农业科学, 2009, 37(17): 7889-7891. doi: 10.3969/j.issn.0517-6611.2009.17.033
[22] LI S, WU J L, HUO Y L, et al. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in northwest China[J]. Science of the Total Environment, 2021, 752: 141827. doi: 10.1016/j.scitotenv.2020.141827
[23] YAASHIKAA P R, KUMAR P S, JEEVANANTHAM S, et al. A review on bioremediation approach for heavy metal detoxification and accumulation in plants[J]. Environmental Pollution, 2022, 301: 119035. doi: 10.1016/j.envpol.2022.119035
[24] ASEMOLOYE M D, CHKWUKA K S, JONATHAN S G. Spent mushroom compost enhances plant response and phytoremediation of heavy metal polluted soil[J]. Journal of Plant Nutrition and Soil Science, 2020, 183(4): 492-499. doi: 10.1002/jpln.202000044
[25] CAI B, CHEN Y H, DU L, et al. Spent mushroom compost and calcium carbonate modification enhances phytoremediation potential of Macleaya cordata to lead-zinc mine tailings[J]. Journal of Environmental Management, 2021, 294: 113029. doi: 10.1016/j.jenvman.2021.113029
[26] 胡丰青, 颜蒙蒙, 王济, 等. 土壤重金属有效态和生物碳关系研究进展及展望[J]. 贵州师范大学学报(自然科学版), 2016, 34(4): 116-120.
[27] 陶荣浩. 有机酸和氯化钙强化玉米修复镉铅污染农田效果研究[D]. 合肥: 安徽农业大学, 2023.
[28] CHEN J R, SHAFI M, WANG Y, et al. Organic acid compounds in root exudation of moso bamboo (Phyllostachys pubescens) and its bioactivity as affected by heavy metals[J]. Environmental Science and Pollution Research, 2016, 23(20): 20977-20984.
[29] DONG X, DAI M, YANG T, et al. Mechanism of interaction between ascorbic acid and soil iron-containing minerals for peroxydisulfate activation and organophosphorus flame retardant degradation[J]. Environmental research, 2023, 244: 117883.
[30] WU S H, TURSENJAN D, SUN Y B. Impact of compost methods on humification and heavy metal passivation during chicken manure composting[J]. Journal of Environmental Management, 2023, 325: 116573. doi: 10.1016/j.jenvman.2022.116573
[31] 刘凡, 谭文峰, 刘桂秋, 等. 几种土壤中铁锰结核的重金属离子吸附与锰矿物类型[J]. 土壤学报, 2002(5): 699-706. doi: 10.3321/j.issn:0564-3929.2002.05.012
[32] GASPARATOS D. Sequestration of heavy metals from soil with Fe-Mn concretions and nodules[J]. Environmental Chemistry Letters, 2013, 11(1): 1-9. doi: 10.1007/s10311-012-0386-y
[33] 许梦雅, 张超, 单保庆, 等. 白洋淀不同类型水体表层沉积物重金属的赋存形态及风险[J]. 环境科学, 2022, 43(9): 4532-4542.
[34] 张维, 傅开彬, 王磊, 等. 四川某铜矿选冶渣综合理化特性及环境污染特性评价[J]. 环境化学, 2023, 43(2): 1-12.
[35] 李中兴, 任珺, 周怡蕾, 等. 酸改性凹凸棒石对土壤Cu-Zn的钝化修复[J]. 环境工程学报, 2022, 16(10): 3381-3391. doi: 10.12030/j.cjee.202201017