[1] NIELSEN U N, AYRES E, WALL D H, et al. Soil biodiversity and carbon cycling: A review and synthesis of studies examining diversity-function relationships[J]. European Journal of Soil Science, 2011, 62(1): 105-116. doi: 10.1111/j.1365-2389.2010.01314.x
[2] GRAHAM E B, WIEDER W R, LEFF J W, et al. Do we need to understand microbial communities to predict ecosystem function? A comparison of statistical models of nitrogen cycling processes[J]. Soil Biology & Biochemistry, 2014, 68: 279-282.
[3] VALENTíN-VARGAS A, ROOT R A, NEILSON J W, et al. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment[J]. Science of the Total Environment, 2014, 500: 314-324.
[4] SUN R B, GUO X S, WANG D Z, et al. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle[J]. Applied Soil Ecology, 2015, 95: 171-178. doi: 10.1016/j.apsoil.2015.06.010
[5] EVANS S E, WALLENSTEIN M D. Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter?[J]. Biogeochemistry, 2012, 109(1-3): 101-116. doi: 10.1007/s10533-011-9638-3
[6] LAUBER C L, RAMIREZ K S, AANDERUD Z, et al. Temporal variability in soil microbial communities across land-use types[J]. Isme Journal, 2013, 7(8): 1641-1650. doi: 10.1038/ismej.2013.50
[7] AUFFRET M D, KARHU K, KHACHANE A, et al. The role of microbial community composition in controlling soil respiration responses to temperature[J]. Plos One, 2016, 11(10): e0165448. doi: 10.1371/journal.pone.0165448
[8] ZUBER S M, VILLAMIL M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities[J]. Soil Biology & Biochemistry, 2016, 97: 176-187.
[9] SUN R B, LI W Y, DONG W X, et al. Tillage changes vertical distribution of soil bacterial and fungal communities[J]. Frontiers in Microbiology, 2018, 9: 699. doi: 10.3389/fmicb.2018.00699
[10] SAIFULLAH, DAHLAWI S, NAEEM A, et al. Biochar application for the remediation of salt-affected soils: challenges and opportunities[J]. Science of the Total Environment, 2018, 625: 320-335. doi: 10.1016/j.scitotenv.2017.12.257
[11] OLIVEIRA F R, PATEL A K, JAISI D P, et al. Environmental application of biochar: current status and perspectives[J]. Bioresource Technology, 2017, 246: 110-122. doi: 10.1016/j.biortech.2017.08.122
[12] LAL R. Restoring soil quality to mitigate soil degradation[J]. Sustainability, 2015, 7(5): 5875-5895. doi: 10.3390/su7055875
[13] ZHANG X, QU J S, LI H, et al. Biochar addition combined with daily fertigation improves overall soil quality and enhances water-fertilizer productivity of cucumber in alkaline soils of a semi-arid region[J]. Geoderma, 2020, 363: 114170. doi: 10.1016/j.geoderma.2019.114170
[14] FIERER N, WOOD S A, DE MESQUITA C P B. How microbes can, and cannot, be used to assess soil health[J]. Soil Biology & Biochemistry, 2021, 153: 108111.
[15] 王莹, 曹世伟, 朱义, 等. 2种生物炭施用对滨海盐渍土土壤及植物影响的对比分析[J/OL]. 环境工程学报, 1-11[2024-10-13]. http://kns.cnki.net/kcms/detail/11.5591.X.20240906.1808.012.html.
[16] ZHENG Y F, XU Z C, LIU H D, et al. Patterns in the microbial community of salt-tolerant plants and the functional genes associated with salt stress alleviation[J]. Microbiology Spectrum, 2021, 9(2): e00767-21.
[17] YANG X X, DAI Z A, YUAN R W, et al. Effects of salinity on assembly characteristics and function of microbial communities in the phyllosphere and rhizosphere of salt-tolerant Avicennia marina mangrove species[J]. Microbiology Spectrum, 2023, 11(2): e03000-22.
[18] JIANG H C, HUANG Q Y, DENG S C, et al. Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau[J]. Extremophiles, 2010, 14(4): 367-376. doi: 10.1007/s00792-010-0316-5
[19] MACIAS-PEREZ L A, LEVARD C, BARAKAT M, et al. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context[J]. Journal of Hazardous Materials, 2022, 424: 127470. doi: 10.1016/j.jhazmat.2021.127470
[20] ROLDAN D M, CARRIZO D, SANCHEZ-GARCIA L, et al. Diversity and effect of increasing temperature on the activity of methanotrophs in sediments of fildes peninsula freshwater lakes, King George Island, Antarctica[J]. Frontiers in Microbiology, 2022, 13: 822552. doi: 10.3389/fmicb.2022.822552
[21] ZHANG Q Q, ZHAO W W, ZHOU Z Z, et al. The application of mixed organic and inorganic fertilizers drives soil nutrient and bacterial community changes in teak plantations[J]. Microorganisms, 2022, 10(5): 958. doi: 10.3390/microorganisms10050958
[22] LIU X J, DU F F, CHEN S Z, et al. Increased diversity of rhizosphere bacterial community confers adaptability to coastal environment for Sapium sebiferum trees[J]. Forests, 2022, 13(5): 667. doi: 10.3390/f13050667
[23] YE Y L, MA K J, FU Y H, et al. The heterogeneity of microbial diversity and its drivers in two types of sediments from tidal flats in Beibu Gulf, China[J]. Frontiers in Marine Science, 2023, 10: 1256393. doi: 10.3389/fmars.2023.1256393
[24] XUN W B, LIU Y P, LI W, et al. Specialized metabolic functions of keystone taxa sustain soil microbiome stability[J]. Microbiome, 2021, 9(1): 35. doi: 10.1186/s40168-020-00985-9
[25] 郭晓雯, 杜思垚, 王芳霞, 等. 长期咸水滴灌对棉田土壤细菌和真菌群落结构的影响[J]. 新疆农业科学, 2022, 59(12): 2909-2923. doi: 10.6048/j.issn.1001-4330.2022.12.006
[26] KALWASINSKA A, FELFOLDI T, SZABO A, et al. Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 2017, 110(7): 945-962. doi: 10.1007/s10482-017-0866-y
[27] ZHU F X, ZHU C Y, DOYLE E, et al. Fate of di (2 ethylhexyl) phthalate in different soils and associated bacterial community changes[J]. Science of the Total Environment, 2018, 637: 460-469.
[28] YADAV A N, SAXENA A K. Biodiversity and biotechnological applications of halophilic microbes for sustainable agriculture[J]. Journal of Applied Biology & Biotechnology, 2018, 6(1): 48-55.
[29] LIU C, YAMAMURA H, HAYAKAWA M, et al. Plant growth-promoting and antimicrobial chloropyrroles from a rare actinomycete of the genus Catellatospora[J]. Journal of Antibiotics, 2022, 75(12): 655-661. doi: 10.1038/s41429-022-00567-x
[30] MANZONI S, PORPORATO A. Soil carbon and nitrogen mineralization: theory and models across scales[J]. Soil Biology & Biochemistry, 2009, 41(7): 1355-1379.
[31] LI C H, MA B L, ZHANG T Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L. ) planted in large pots under field exposure[J]. Canadian Journal of Soil Science, 2002, 82(2): 147-154. doi: 10.4141/S01-026
[32] 刘强, 袁延飞, 刘一帆, 等. 生物炭对盐渍化土壤改良的研究进展[J]. 地球科学进展, 2022, 37(10): 1005-1024. doi: 10.11867/j.issn.1001-8166.2022.050
[33] YUAN B C, XU X G, LI Z Z, et al. Microbial biomass and activity in alkalized magnesic soils under arid conditions[J]. Soil Biology & Biochemistry, 2007, 39(12): 3004-3013.
[34] REINHOLD-HUREK B, BUENGER W, BURBANO C S, et al. Roots shaping their microbiome: global hotspots for microbial activity[J]. Annual Review of Phytopathology, 2015, 532015: 403-424.
[35] BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576. doi: 10.1038/s41579-018-0024-1
[36] FAUST K, RAES J. Microbial interactions: from networks to models[J]. Nature Reviews Microbiology, 2012, 10(8): 538-550. doi: 10.1038/nrmicro2832
[37] LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota-a review[J]. Soil Biology & Biochemistry, 2011, 43(9): 1812-1836.
[38] ZHENG H, WANG X, CHEN L, et al. Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation[J]. Plant Cell and Environment, 2018, 41(3): 517-532. doi: 10.1111/pce.12944
[39] YAO T X, ZHANG W T, GULAQA A, et al. Effects of peanut shell biochar on soil nutrients, soil enzyme activity, and rice yield in heavily saline-sodic paddy field[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 655-664. doi: 10.1007/s42729-020-00390-z
[40] 徐广平, 滕秋梅, 沈育伊, 等. 香蕉茎叶生物炭对香蕉枯萎病防控效果及土壤性状的影响[J]. 生态环境学报, 2020, 29(12): 2373-2384.
[41] RANADEV P, ASHWIN R, BAGYARAJ D J, et al. Sulfur oxidizing bacteria in agro ecosystem and its role in plant productivity-a review[J]. Journal of Applied Microbiology, 2023, 134(8): lxad161. doi: 10.1093/jambio/lxad161
[42] QIN Y, DRUZHININA I S, PAN X Y, et al. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture[J]. Biotechnology Advances, 2016, 34(7): 1245-1259. doi: 10.1016/j.biotechadv.2016.08.005