[1] |
任加国, 郜普闯, 徐祥健, 等. 地下水氯代烃污染修复技术研究进展[J]. 环境科学研究, 2021, 34(7): 1641-1653.
|
[2] |
CZINNEROVA M, VOLOSCUKOVA O, MARKOVA K, et al. Combining nanoscale zero-valent iron with electrokinetic treatment for remediation of chlorinated ethenes and promoting biodegradation: A long-term field study[J]. Water Research, 2020, 175: 115692. doi: 10.1016/j.watres.2020.115692
|
[3] |
刘诗婷, 刘静, 刘爱荣, 等. 纳米零价铁基材料用于地下水修复研究进展[J]. 环境科学与技术, 2022, 45(9): 181-193.
|
[4] |
DONG H, LI L, LU Y, et al. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review[J]. Environment International, 2019, 124: 265-277. doi: 10.1016/j.envint.2019.01.030
|
[5] |
LEFEVRE E, BOSSA N, WIESNER M R, et al. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities[J]. Science of the Total Environment, 2016, 565: 889-901. doi: 10.1016/j.scitotenv.2016.02.003
|
[6] |
STEFANIUK M, OLESZCZUK P, OK Y S. Review on nano zerovalent iron (nZVI): From synthesis to environmental applications[J]. Chemical Engineering Journal, 2016, 287: 618-632. doi: 10.1016/j.cej.2015.11.046
|
[7] |
WU Z N, MAN Q L, NIU H Y, et al. Recent advances and trends of trichloroethylene biodegradation: A critical review[J]. Frontiers in Microbiology, 2022, 13: 1053169. doi: 10.3389/fmicb.2022.1053169
|
[8] |
GERLACH R, CUNNINGHAM A B, CACCAVO F. Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal[J]. Environmental Science & Technology, 2000, 34(12): 2461-2464.
|
[9] |
马黎颖, 和明敏, 陈绍华. 异化铁还原菌强化纳米零价铁在环境修复中的应用研究进展[J]. 广州化工, 2020, 48(21): 14-16. doi: 10.3969/j.issn.1001-9677.2020.21.007
|
[10] |
SHIN H Y, SINGHAL N, PARK J W. Regeneration of iron for trichloroethylene reduction by Shewanella alga BrY[J]. Chemosphere, 2007, 68(6): 1129-1134. doi: 10.1016/j.chemosphere.2007.01.059
|
[11] |
HONETSCHLäGEROVá L, ŠKAROHLíD R, MARTINEC M, et al. Interactions of nanoscale zero valent iron and iron reducing bacteria in remediation of trichloroethene[J]. International Biodeterioration & Biodegradation, 2018, 127: 241-246.
|
[12] |
袁梦姣, 王晓慧, 赵芳, 等. 零价铁与微生物耦合修复地下水的研究进展[J]. 中国环境科学, 2021, 41(3): 1119-1131. doi: 10.3969/j.issn.1000-6923.2021.03.014
|
[13] |
LI H, ZHANG X, ZHANG Y, et al. The iron cycling mediated by a single strain Shewanella oneidensis MR-1 and its implication for nitrogen removal[J]. Chemical Engineering Journal, 2023, 471: 144727. doi: 10.1016/j.cej.2023.144727
|
[14] |
YANG Z, WANG X L, LI H, et al. Re-activation of aged-ZVI by iron-reducing bacterium Shewanella putrefaciens for enhanced reductive dechlorination of trichloroethylene[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(10): 2642-2649.
|
[15] |
KOOLIVAND A, ABTAHI H, PARHAMFAR M, et al. Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: Effective scale-up from liquid medium to composting process[J]. Journal of Environmental Management, 2019, 248: 109228. doi: 10.1016/j.jenvman.2019.06.129
|
[16] |
符波, 廖潇逸, 丁丽丽, 等. 环境扫描电镜对废水生物样品形态结构的表征研究[J]. 中国环境科学, 2010, 30(1): 93-98.
|
[17] |
TANG F, TIAN F, ZHANG L, et al. Remediation of trichloroethylene by microscale zero-valent iron aged under various groundwater conditions: Removal mechanism and physicochemical transformation[J]. Science of the Total Environment, 2021, 775: 145757. doi: 10.1016/j.scitotenv.2021.145757
|
[18] |
DRIES J, BASTIAENS L, SPRINGAEL D, et al. Combined removal of chlorinated ethenes and heavy metals by zerovalent iron in batch and continuous flow column systems[J]. Environmental Science & Technology, 2005, 39(21): 8460-8465.
|
[19] |
LI L, QU Z, WANG B, et al. The response of metabolically active Clostridium community to initial pH shift is closely correlated with microbial Fe(III) reduction in flooded paddy soils[J]. Journal of Soils and Sediments, 2018, 19(2): 522-532.
|
[20] |
HU J, ZENG Q, CHEN H, et al. Effect of bacterial cell addition on Fe(III) reduction and soil organic matter transformation in a farmland soil[J]. Geochimica et Cosmochimica Acta, 2022, 325: 25-38. doi: 10.1016/j.gca.2022.03.018
|
[21] |
刘艳娟, 卢洪斌, 孟丽聪, 等. 微生物燃料电池型水质生物毒性传感器的研究进展[J]. 中国给水排水, 2023, 39(16): 1-7.
|
[22] |
洪忠强, 吕红, 王晓磊, 等. 希瓦氏菌分泌黄素对间硝基苯磺酸钠厌氧生物还原影响[J]. 大连理工大学学报, 2023, 63(6): 560-566. doi: 10.7511/dllgxb202306002
|
[23] |
刘洪艳, 袁媛, 张姗, 等. 电子穿梭体对菌株Clostridium butyricum LQ25异化铁还原性质影响[J]. 微生物学报, 2021, 61(6): 1496-1506.
|
[24] |
李顺灵, 屈庆, 李蕾, 等. 金属-微生物界面电子传递机制及其对金属腐蚀的影响[J]. 云南大学学报(自然科学版), 2018, 40(6): 1240-1245. doi: 10.7540/j.ynu.20180360
|
[25] |
吴朵而, 陈龙, 马香娟, 等. 基于电活性微生物的芳香烃类污染物转化机制研究进展[J]. 微生物学报, 2023, 63(1): 30-44.
|
[26] |
刘洪艳, 覃海华, 王珊. 海洋沉积物中一株铁还原细菌ZQ21异化还原Fe(Ⅲ)性质分析[J]. 海洋环境科学, 2019, 38(4): 508-512+520. doi: 10.12111/j.mes20190404
|
[27] |
刘洪艳, 刘淼, 袁媛. 海洋沉积物中铁还原细菌组成及异化铁还原与产氢性质分析[J]. 微生物学通报, 2020, 47(9): 2711-2719.
|
[28] |
关舒元, 朱超, 王保莉, 等. 铁还原菌株P4的碳源利用特征及其系统发育学分析[J]. 西北农林科技大学学报(自然科学版), 2008(3): 117-123.
|
[29] |
JIA R, LI L, QU D, et al. Enhanced iron(III) reduction following amendment of paddy soils with biochar and glucose modified biochar[J]. Environmental Science and Pollution Research, 2016, 25(1): 91-103.
|
[30] |
祝佳欣, 朱雯喆, 徐俊, 等. 基于导电材料强化抗生素胁迫厌氧消化的研究进展[J]. 化工进展, 2023, 42(2): 1008-1019.
|
[31] |
肖勇, 吴松, 杨朝晖, 等. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780. doi: 10.7536/PC130125
|
[32] |
刘翠英, 郁李鑫, 杨超, 等. 纳米Fe3O4/生物炭促进红壤性水稻土中六氯苯厌氧脱氯作用研究[J]. 土壤学报, 2024, 61(5): 1310-1322.
|
[33] |
ZHOU C S, CAO G L, WU X K, et al. Removal of antibiotic resistant bacteria and genes by nanoscale zero-valent iron activated persulfate: Implication for the contribution of pH decrease[J]. Journal of Hazardous Materials, 2023, 452: 131343. doi: 10.1016/j.jhazmat.2023.131343
|
[34] |
李聪慧, 李振鑫, 张正玉, 等. 多黏菌素B生产菌多黏芽孢杆菌的选育和发酵过程优化[J]. 中国医药工业杂志, 2023, 54(8): 1208-1215.
|
[35] |
杨壮, 刘怡琳, 李隆熙, 等. 固态发酵制备黄精多糖的工艺优化、理化特性及抗氧化活性[J]. 食品与发酵工业, 2024, 50(7): 92-98.
|
[36] |
王泽宇, 范红叶, 吕思妮, 等. Fe-Pd/MWCNTs提升己酸巨球菌产酸性能的影响机理[J]. 环境科学学报, 2024, 44(1): 333-340.
|
[37] |
魏后军, 范志宇, 胡波, 等. 无毒性产气荚膜梭菌α毒素重组蛋白的自诱导分泌表达及免疫原性分析[J]. 江苏农业科学, 2022, 50(14): 166-169.
|
[38] |
吴娜莎, 孙亚琴, 修志龙. 耐高渗克鲁斯假丝酵母的耐受性[J]. 生物工程学报, 2024, 40(3): 908-920.
|