[1] UZKURT KALJUNEN J, AL-JUBOORI R A, KHUNJAR W, et al. Phosphorus recovery alternatives for sludge from chemical phosphorus removal processes–Technology comparison and system limitations[J]. Sustainable Materials and Technologies, 2022, 34: e00514. doi: 10.1016/j.susmat.2022.e00514
[2] NEDELCIU C E, RAGNARSDOTTIR K V, SCHLYTER P, et al. Global phosphorus supply chain dynamics: Assessing regional impact to 2050[J]. Global Food Security, 2020, 26: 100426. doi: 10.1016/j.gfs.2020.100426
[3] DANESHGAR S, CALLEGARI A, CAPODAGLIO G A, et al. The potential phosphorus crisis: Resource conservation and possible escape technologies: A review[J]. Resources, 2018, 7(2): 37-37. doi: 10.3390/resources7020037
[4] YOGEV U, VOGLER M, NIR O, et al. Phosphorous recovery from a novel recirculating aquaculture system followed by its sustainable reuse as a fertilizer[J]. Science of the Total Environment, 2020, 722: 137949. doi: 10.1016/j.scitotenv.2020.137949
[5] 丁燕燕, 于鸿宇, 戴晓虎. 污泥中的磷及回收技术研究进展[J]. 中国给水排水, 2022, 38(16): 29-34.
[6] 赵刚, 唐建国, 徐竟成. 污水处理厂污泥稳定化过程中磷的迁移转化及资源化价值[J]. 给水排水, 2022, 58(11): 44-50.
[7] XUE Y, WANG Z P, WU Y, et al. Migration and conversion of phosphorus in hydrothermal carbonization of municipal sludge with hydrochloric acid[J]. Sustainability, 2023, 15(8): 6799. doi: 10.3390/su15086799
[8] 张伟军, 原浩, 张彧, 等. 污泥稳定化过程中磷的转化规律和生物有效性[J]. 安全与环境工程, 2022, 29(5): 212-222+231.
[9] 许劲, 徐军, 吕秋颖, 等. 水热碳化技术用于污泥处理处置前景分析[J]. 中国给水排水, 2020, 36(16): 54-56.
[10] CARLA P, JEAN-FRANÇOIS B, NILS S, et al. Phosphorus release from hydrothermally carbonized digested sewage sludge using organic acids[J]. Waste Management, 2022, 151: 60-69. doi: 10.1016/j.wasman.2022.07.023
[11] VICKY S E, SATYANARAYANA N, TOMMY E, et al. Influence of post-and pre-acid treatment during hydrothermal carbonization of sewage sludge on P-transformation and the characteristics of hydrochar[J]. Processes, 2022, 10(1): 151. doi: 10.3390/pr10010151
[12] MA X, LIU J Y, HU P S, et al. Combining ethylene diamine tetraacetic acid and high voltage pulsed discharge pretreatment to enhance short-chain fatty acids and phosphorus release from waste activated sludge via anaerobic fermentation[J]. Journal of Cleaner Production, 2019, 240: 118252. doi: 10.1016/j.jclepro.2019.118252
[13] ZOU J T, ZHANG L L, WANG L, et al. Enhancing phosphorus release from waste activated sludge containing ferric or aluminum phosphates by EDTA addition during anaerobic fermentation process[J]. Chemosphere, 2017, 171: 601-608. doi: 10.1016/j.chemosphere.2016.12.113
[14] 陈树俊. 基于低温热处理技术的城市污泥磷回收[D]. 广州: 广东工业大学, 2017.
[15] 史可, 徐志嫱, 李瑶, 等. EDTA-2Na添加提高污泥热水解磷的回收效率和鸟粪石纯度[J]. 环境科学学报, 2020, 40(2): 554-562.
[16] 刘博文, 金若菲, 兰兵兵, 等. 热碱-EDTA耦合法强化污泥破解及效果分析[J]. 环境工程学报, 2020, 14(1): 217-223. doi: 10.12030/j.cjee.201902110
[17] 肖倩, 杨垒, 任勇翔, 等. 硝化污泥胞外聚合物分层组分提取方法的比较[J]. 环境科学学报, 2018, 38(8): 3045-3053.
[18] LI R D, ZHANG Z H, LI Y L, et al. Transformation of apatite phosphorus and non-apatite inorganic phosphorus during incineration of sewage sludge[J]. Chemosphere, 2015, 141: 57-61. doi: 10.1016/j.chemosphere.2015.05.094
[19] GARCíA-ALBACETE M, MARTíN A, CARTAGENA M C. Fractionation of phosphorus biowastes: Characterisation and environmental risk[J]. Waste Management, 2012, 32(6): 1061-1068. doi: 10.1016/j.wasman.2012.02.003
[20] ZHI Y W, XU H D, JIANG G Y, et al. A review of hydrothermal carbonization of municipal sludge: Process conditions, physicochemical properties, methods coupling, energy balances and life cycle analyses[J]. Fuel Processing Technology, 2024, 254: 107943. doi: 10.1016/j.fuproc.2023.107943
[21] 王涛. 城市污泥(水)热处理固体产物中磷的迁移转化及释放回收研究[D]. 长沙: 湖南大学, 2018.
[22] LI R D, YIN J, WANG W Y, et al. Transformation of phosphorus during drying and roasting of sewage sludge[J]. Waste management, 2014, 34(7): 1211-1216. doi: 10.1016/j.wasman.2014.03.022
[23] HUANG R X, FANG C, LU X W, et al. Transformation of phosphorus during (hydro) thermal treatments of solid biowastes: reaction mechanisms and implications for P reclamation and recycling[J]. Environmental Science & Technology, 2017, 51(18): 10284-10298.
[24] 郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025.
[25] ZHANG M Y, KUBA T. Inhibitory effect of metal ions on the poly-phosphate release from sewage sludge during thermal treatment[J]. Environmental Technology, 2014, 35(9): 1157-1164. doi: 10.1080/09593330.2013.863980
[26] ZHAO P T, SHEN Y F, GE S F, et al. Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization[J]. Energy Conversion and Management, 2014, 78: 815-821. doi: 10.1016/j.enconman.2013.11.026
[27] ZHENG C P, MA X Q, YAO Z L, et al. The properties and combustion behaviors of hydrochars derived from co-hydrothermal carbonization of sewage sludge and food waste[J]. Bioresource Technology, 2019, 285: 121347. doi: 10.1016/j.biortech.2019.121347
[28] 赵丹, 张琳, 郭亮, 等. 水热碳化与干法碳化对剩余污泥的处理比较[J]. 环境科学与技术, 2015, 38(10): 78-83.
[29] GAO N B, LI Z Y, QUAN C, et al. A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification[J]. Journal of Analytical and Applied Pyrolysis, 2019, 139: 187-195. doi: 10.1016/j.jaap.2019.02.003
[30] 许思涵, 王敏艳, 张进, 等. 反应时间对污泥水热炭特性及重金属生态风险的影响[J]. 环境污染与防治, 2021, 43(3): 283-288.
[31] 薛香玉, 陈德珍, 戴晓虎, 等. 污泥水热反应产物特性与水热温度选择[J]. 中国电机工程学报, 2016(19): 5254-5262.
[32] 张瑞. 市政污泥水解—水热碳化和水热共碳化工艺产物提质研究[D]. 西安: 长安大学, 2022.