[1] |
褚家宝. 铜铟镓硒 (CIGS)薄膜太阳能电池研究[D]. 上海: 华东师范大学, 2009.
|
[2] |
ZHOU Y, LI J, RECHBERGER H, et al. Dynamic criticality of by-products used in thin-film photovoltaic technologies by 2050[J]. Journal of Cleaner Production, 2020, 263: 121599. doi: 10.1016/j.jclepro.2020.121599
|
[3] |
ELSHKAKI A, GRAEDEL T. Dynamic analysis of the global metals flows and stocks in electricity generation technologies[J]. Journal of Cleaner Production, 2013, 59: 260-273. doi: 10.1016/j.jclepro.2013.07.003
|
[4] |
LV Y, XING P, MA B, et al. Separation and recovery of valuable elements from spent CIGS materials[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 19816-19823.
|
[5] |
ZUSER A, RECHBERGER H. Considerations of resource availability in technology development strategies: The case study of photovoltaics[J]. Resources, Conservation and Recycling, 2011, 56: 56-65. doi: 10.1016/j.resconrec.2011.09.004
|
[6] |
LI X, MA B, HU D, et al. Efficient separation and purification of indium and gallium in spent Copper indium gallium diselenide (CIGS)[J]. Journal of Cleaner Production, 2022, 339: 130658. doi: 10.1016/j.jclepro.2022.130658
|
[7] |
NASSAR N. T, WILBURN D R, GOONAN T G. Byproduct metal requirements for U. S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J]. Applied Energy, 2016, 183: 1209-1226. doi: 10.1016/j.apenergy.2016.08.062
|
[8] |
ZHENG K, BENEDETTI M F, HULLEBUSCH E D. Recovery technologies for indium, gallium, and germanium from end-of-life products (electronic waste)-A review[J]. Journal of Environmental Management, 2023, 347: 119043. doi: 10.1016/j.jenvman.2023.119043
|
[9] |
BLEIWAS D I. Byproduct mineral commodities used for the production of photovoltaic cells[J]. US Geological Survey Circular, 2010, 1365: 1-10.
|
[10] |
NADJA R B, BERNHARD W, KARL F. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells[J]. Science of the Total Environment, 2016, 543: 703-714. doi: 10.1016/j.scitotenv.2015.11.074
|
[11] |
LAURENCE S, ADISA A. Environmental impacts of copper indium gallium-selenide (CIGS) photovoltaics and the elimination of cadmium through atomi layer deposition[J]. Science of the Total Environment, 2019, 688: 1092-1101. doi: 10.1016/j.scitotenv.2019.06.343
|
[12] |
YANG T, LI K, LI X, et al. Toward lossless photovoltaic efficiency of laser-shaped flexible Cu(In, Ga)Se2 solar cells on stainless steel substrates[J]. Solar Energy, 2023, 255: 12-25. doi: 10.1016/j.solener.2023.03.024
|
[13] |
TAKUYA D, IZUMI T, HIROAKI U, et al. Experimental study on PV module recycling with organic solvent method[J]. Solar Energy Materials & Solar Cells, 2001, 67: 397-403.
|
[14] |
BERGER W, SIMON F, WEIMANN K, et al. A novel approach for the recycling of thin film photovoltaic modules[J]. Resources, Conservation and Recycling, 2010, 54: 711-718. doi: 10.1016/j.resconrec.2009.12.001
|
[15] |
PRASAD D, SANJANA B, KIRAN D, et al. Process optimization studies of essential parameters in the organic solvent method for the recycling of waste crystalline silicon photovoltaic modules[J]. 2022, 245: 111850.
|
[16] |
KIM Y, LEE J. Dissolution of ethylene vinyl acetate in crystalline silicon PV modules using ultrasonic irradiation and organic solvent[J]. Solar Energy Materials & Solar Cells, 2012, 98: 317-322.
|
[17] |
MARWEDE M, BERGER W, SCHLUMMER M, et al. Recycling paths for thin-film chalcogenide photovoltaic waste–Current feasible processes[J]. Renewable Energy, 2013, 55: 220-229. doi: 10.1016/j.renene.2012.12.038
|
[18] |
BOHLAND J, ANISIMOV I. Possibility of recycling silicon PV modules[J]. Conference Record of the IEEE Photovoltaic Specialists Conference, 1997: 1173-1175.
|
[19] |
PAGNANELLI F, MOSCARDINI E, GRANATA G, et al. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies[J]. Waste Management. 2017, 59: 422-431.
|
[20] |
PALITZSCH W, LOSER U. Economic PV waste recycling solutions-Results from R&D and practice, Conference Record of the IEEE Photovoltaic Specialists Conference[J]. 2012: 628-631.
|
[21] |
翟墨. 铜铟镓硒太阳能电池非真空法制备及性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020.
|
[22] |
LEE S, SIM J, KISSINGER N J, et al. Se interlayer in CIGS absorption layer for solar cell devices[J]. Journal of Alloys and Compounds, 2015, 633: 31-36. doi: 10.1016/j.jallcom.2015.01.126
|
[23] |
VALENTIN A, MATTEO B, MARIE J, et al. Study of Cu(In, Ga)Se2 thin film growth at low temperature on polyimide substrate in a multistage coevaporation process for photovoltaic applications[J]. ACS Applied Energy Materials, 2018, 1: 5257-5267.
|
[24] |
LI L, ZHANG X, HUANG Y, et al. Investigation on the performance of Mo2N thin film as barrier layer against Fe in the flexible Cu(In, Ga)Se2 solar cells on stainless steel substrates[J]. Journal of Alloys and Compounds, 2017, 698: 194-199. doi: 10.1016/j.jallcom.2016.12.159
|
[25] |
YU J, ZHENG H, HOU D, et al. Silane coupling agent modification treatment to improve the properties of rubber−cement composites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9: 12899-12911.
|
[26] |
FATEMEH A, AMIR H N, Recent advances in chemical surface modification of metal oxide nanoparticles with silane coupling agents: A review[J]. Advances in Colloid and Interface Science, 2020, 286: 102298.
|
[27] |
KIM K, JANG S. Molecular dynamics simulation study on the structural properties of poly (ethylene terephthalate) under uniaxial extension and thermal shrinkage processes[J]. Current Applied Physics, 2018, 18: 19-26. doi: 10.1016/j.cap.2017.10.019
|
[28] |
PRETE P, CESPI D, PASSARINI F, et al. Glycidol syntheses and valorizations: Boosting the glycerol biorefinery[J]. Current Opinion in Green and Sustainable Chemistry, 2022, 35: 100624. doi: 10.1016/j.cogsc.2022.100624
|
[29] |
MATEUSZ G, MARIUSZ G, MONIKA G, et al. Polyglycidol, its derivatives, and polyglycidol-containing copolymers—synthesis and medical applications[J]. Polymers, 2016, 8(6): 227. doi: 10.3390/polym8060227
|
[30] |
CLAIRE M, JEAN-CHRISTOPHE M. Perspectives for the upgrading of bio-based vicinal diols within the developing european bioeconomy[J]. ChemSusChem, 2022, 15(5): 202102391. doi: 10.1002/cssc.202102391
|
[31] |
XU Z, CHADA J P, XU L, et al. Ethylene dimerization and oligomerization to 1-Butene and higher olefins with chromium-promoted cobalt on carbon catalyst[J]. ACS Catalysis, 2018, 8: 2488-2497. doi: 10.1021/acscatal.7b03205
|
[32] |
李雪华, 林坤华. 硅烷偶联剂对光伏密封胶耐候粘接性的影响[J]. 粘接, 2019, 40(6): 16-19. doi: 10.3969/j.issn.1001-5922.2019.06.006
|
[33] |
徐青. 乙烯-醋酸乙烯酯共聚物的生产技术与展望[J]. 石油化工, 2013, 42(3): 346-351. doi: 10.3969/j.issn.1000-8144.2013.03.019
|
[34] |
QIN B, LIN M, HUANG Z, et al. Preparing cedrene from ethylene-vinyl acetate copolymer and polyethylene terephthalate of waste solar cells[J]. Journal of Cleaner Production, 2020, 254: 120065. doi: 10.1016/j.jclepro.2020.120065
|