[1] 曲久辉, 刘会娟. 水处理科学与技术: 水处理电化学原理与技术[M]. 北京: 北京科学出版社, 2007.
[2] CHIANG L C, CHANG J E, WEN T C. Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate[J]. Water Research, 1995, 29(2): 671-678. doi: 10.1016/0043-1354(94)00146-X
[3] COMNINELLIS C, NERINI A. Anodic oxidation of phenol in the presence of NaCl for wastewater treatment[J]. Journal of Applied Electrochemistry, 1995, 25(1): 23-28.
[4] RIBORDY P, PULGARIN C, KIWI J, et al. Electrochemical versus photochemical pretreatment of industrial wastewaters[J]. Water Science Techonology, 1997, 35(4): 293-302. doi: 10.2166/wst.1997.0141
[5] YUAN J, LI Y, CHEN X, et al. One electron oxidation-induced degradation of brominated flame retardants in electroactive membrane filtration system: Vital role of dichlorine radical-mediated process[J]. Journal of Hazardous Materials, 2024, 471: 134318. doi: 10.1016/j.jhazmat.2024.134318
[6] WANG Z W, ALMATRAFI E, WANG H, et al. Cobalt single atoms anchored on oxygen-doped tubular carbon nitride for efficient peroxymonosulfate activation: simultaneous coordination structure and morphology modulation[J]. Angewandte Chemie International Edition, 2022, 61(20): 202202338.
[7] YANG S Q, LIU Z Q, CUI Y H, et al. Organics abatement and recovery from wastewater by a polymerization-based electrochemically assisted persulfate process: Promotion effect of chloride ion and its mechanism[J]. Journal of Hazardous Materials, 2023, 446: 130658. doi: 10.1016/j.jhazmat.2022.130658
[8] ZHOU Y J, JI Q H, LIU H J, et al. Pore structure-dependent mass transport in flow-through electrodes for water remediation[J]. Environment Science & Technology, 2018, 52(13): 7477-7485.
[9] WANG S L, PEI S Z, ZHANG J N, et al. Flow-through electrochemical removal of benzotriazole by electroactive ceramic membrane[J]. Water Research, 2022, 218: 118454. doi: 10.1016/j.watres.2022.118454
[10] HAKIZIMANA I, ZHAO X, WANG C, et al. Efficient multi-stage electrochemical flow-through system for refractory organic pollutant treatment: Kinetics, mass transfer, and thermodynamic analysis[J]. Chemosphere, 2023, 344: 140405. doi: 10.1016/j.chemosphere.2023.140405
[11] WANG L L, WANG L, SHI Y W, et al. Blue TiO2 nanotube electrocatalytic membrane electrode for efficient electrochemical degradation of organic pollutants[J]. Chemosphere, 2022, 306: 135628. doi: 10.1016/j.chemosphere.2022.135628
[12] 李曈. 光化学反应中光生电子及共生自由基的调控与利用研究[D]. 北京: 中国科学院大学, 2018.
[13] NATHALIE E G L, PHEBE H V L, JOHAN T P, et al. 20-fold increased limiting currents in oxygen reduction with Cu-tmpa by replacing flow-by with flow-through electrodes[J]. ACS Sustainable Chemistry & Engineering, 2024, 12: 12909-12918.
[14] 刘春前. 稀土La掺杂Ti/Sb-SnO2电极电催化氧化对硝基苯酚[D]. 杭州: 浙江工业大学, 2010.
[15] LIU H, VECITIS C D. Reactive transport mechanism for organic oxidation during electrochemical filtration: mass-transfer, physical adsorption, and electron-transfer[J]. The Journal of Physical Chemistry C, 2012, 116(1): 374-383. doi: 10.1021/jp209390b
[16] WANG Y T, XUE Y D, ZHANG C H. Generation and application of reactive chlorine species by electrochemical process combined with UV irradiation: Synergistic mechanism for enhanced degradation performance[J]. Science of the Total Environment, 2020, 712: 136501. doi: 10.1016/j.scitotenv.2020.136501
[17] ZHANG Y, TANG W J, BAI JING, et al. Highly efficient removal of total nitrogen and dissolved organic compound in waste reverse osmosis concentrate mediated by chlorine radical on 3D Co3O4 nanowires anode[J]. Journal of Hazardous Materials, 2022, 424: 127662. doi: 10.1016/j.jhazmat.2021.127662
[18] XIANG Y Y, FANG J Y, SHANG C. Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process[J]. Water Research, 2015, 90: 301-308.
[19] YANG Y, JIEUM S, JUSTIN T J, et al. Multilayer heterojunction anodes for saline wastewater treatment: design strategies and reactive species generation mechanisms[J]. Environmental Science & Technology, 2016, 50(16): 8780-8787.
[20] ZHANG J, ZHOU Y Y, YAO B, et al. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique[J]. Journal of Hazardous Materials, 2021(418): 126313.
[21] LI T, JIAGN Y, AN X Q, et al. Transformation of humic acid and halogenated byproduct formation in UV-chlorine processes[J]. Water Research, 2016, 102(10): 421-427.
[22] WANG Z Y, LI K L, GUO J J, et al. Elimination of pesticide from high salinity wastewater by electrochlorination process: Active chlorine species and scale-up performance[J]. Separation and Purification Technology, 2023, 306: 122572. doi: 10.1016/j.seppur.2022.122572
[23] PAN Y H, CHENG S S, YANG X, et al. UV/chlorine treatment of carbamazepine: Transformation products and their formation kinetics[J]. Water Research, 2017, 116: 254-265. doi: 10.1016/j.watres.2017.03.033
[24] YANG Z C, QIAN J S, SHAN C, et al. Toward selective oxidation of contaminants in aqueous systems[J]. Environment Science & Technology, 2021(55): 14494-14514.
[25] MARIE D, URS V G. Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: A critical review[J]. Water Research, 2008, 42: 13-51. doi: 10.1016/j.watres.2007.07.025