[1] HOU X J, FENG L, TANG J, et al. Anthropogenic transformation of Yangtze Plain freshwater lakes: Patterns, drivers and impacts[J]. Remote Sensing of Environment, 2020, 248: 111998. doi: 10.1016/j.rse.2020.111998
[2] XIE C, HUANG X, MU H, et al. Impacts of land-use changes on the lakes across the Yangtze Floodplain in China[J]. Environmental Science & Technology, 2017, 51(7): 3669-3677.
[3] 杨柳, 江丰, 谢正磊, 等. 鄱阳湖退田还湖圩区土地返耕利用的研究[J]. 中国土地科学, 2017, 31(3): 44-50.
[4] LI Z F, LUO C, XI Q, et al. Assessment of the AnnAGNPS model in simulating runoff and nutrients in a typical small watershed in the Taihu Lake basin, China[J]. CATENA, 2015, 133: 349-361. doi: 10.1016/j.catena.2015.06.007
[5] 王鹏, 徐爱兰. 太湖流域典型圩区农田氮素地表径流迁移特征[J]. 农业环境科学学报, 2008, 27(4): 1335-1339. doi: 10.3321/j.issn:1672-2043.2008.04.010
[6] YAN R H, LI L L, GAO J F. Modelling the regulation effects of lowland polder with pumping station on hydrological processes and phosphorus loads[J]. Science of the Total Environment, 2018, 637-638: 200-207. doi: 10.1016/j.scitotenv.2018.04.389
[7] VAN DER GRIFT B, BROERS H P, BERNDRECHT W L, et al. High-frequency monitoring reveals nutrient sources and transport processes in an agriculture-dominated lowland water system[J]. Hydrology and Earth System Sciences, 2016, 20(5): 1851-1868. doi: 10.5194/hess-20-1851-2016
[8] HUANG J, CUI Z, TIAN F, et al. Modeling nitrogen export from 2539 lowland artificial watersheds in Lake Taihu basin, China: Insights from process-based modeling[J]. Journal of Hydrology, 2020, 581: 124428. doi: 10.1016/j.jhydrol.2019.124428
[9] 徐海波, 王凯, 凌虹, 等. 江苏省主汛期水体水质变化特征及污染防治对策研究[J]. 环境污染与防治, 2022, 44(3): 350-355.
[10] 林晶晶, 张朦, 黄小龙, 等. 城市通江泵站排水对长江干流水质的影响——以武汉市江南泵站为例[J]. 长江流域资源与环境, 2024, 33(7): 1550-1562.
[11] ZHANG J, Gao J F, ZHU Q , et al. Coupling mountain and lowland watershed models to characterize nutrient loading: An eight-year investigation in Lake Chaohu basin[J]. Journal of Hydrology, 2022, 612(C): 128258.
[12] HUANG J , WANG X X, XIE B D C, et al. Long-term variations of TN and TP in four lakes fed by Yangtze River at various timescales[J]. Environmental Earth Sciences, 2015, 74(5): 3393-4009.
[13] 杨中文, 张萌, 郝彩莲, 等. 基于源汇过程模拟的鄱阳湖流域总磷污染源解析[J]. 环境科学研究, 2020, 33(11): 2493-2506.
[14] 李德龙, 黄萍, 许小华, 等. 基于InfoWorks RS的蒋巷联圩防洪保护区洪水演算[J]. 长江科学院院报, 2018, 35(12): 52-56. doi: 10.11988/ckyyb.20170777
[15] 朱利英, 郑利兵, 王亚炜, 等. 鄱阳湖南昌湖区典型断面总磷超标成因[J]. 中国环境科学, 2024, 44(3): 1436-1447. doi: 10.3969/j.issn.1000-6923.2024.03.026
[16] 李艳红, 王雪漫, 徐珺恺, 等. 鄱阳湖丰水期氮素分布特征及其对藻类的影响[J]. 水生态学杂志, 2022, 43(4): 16-22.
[17] 辛苑, 李萍, 吴晋峰, 等. 强降雨对北运河流域沙河水库水质的影响[J]. 环境科学学报, 2021, 41(1): 199-208.
[18] 沈青云. 平原河网区圩区的非点源污染产排特征分析[D]. 南京: 南京师范大学, 2016.
[19] XIA X H, YANG Z F, HUANG G H, et al. Nitrification in natural waters with high suspended-solid content: A study for the Yellow River[J]. Chemosphere, 2004, 57(8): 1017-1029. doi: 10.1016/j.chemosphere.2004.08.027
[20] DU Y G, LI T Y, HE B H. Runoff-related nutrient loss affected by fertilization and cultivation in sloping croplands: An 11-year observation under natural rainfall[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107549.
[21] 徐责茗, 耿建萍, 蒋咏, 等. 太湖流域典型平原圩区氮污染分析[J]. 江苏水利, 2021, 24(9): 21-26.
[22] 胡振鹏. 2022年鄱阳湖特大干旱及防旱减灾对策建议[J]. 中国防汛抗旱, 2023, 33(2): 1-6.
[23] 姚仕明, 范达福, 栾华龙, 等. 鄱阳湖近年极端洪枯情势分析及应对策略[J/OL]. 长江科学院院报, 2025: 1-9. http://kns.cnki.net/kcms/detail/42.1171.TV.20240507.1501.004.html.
[24] 曹思佳, 李云良, 陈静, 等. 2022年鄱阳湖极端干旱对洪泛区地下水文情势的影响[J]. 中国环境科学, 2023, 43(12): 6601-6610. doi: 10.3969/j.issn.1000-6923.2023.12.036
[25] LEI X Y, GAO L, WEI J H, et al. Contributions of climate change and human activities to runoff variations in the Poyang Lake basin of China[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2021, 123: 103019. doi: 10.1016/j.pce.2021.103019
[26] 温泉沛, 霍治国, 周月华, 等. 南方洪涝灾害综合风险评估[J]. 生态学杂志, 2015, 34(10): 2900-2906.
[27] 朱利英, 赵凯, 张俊亚, 等. 不同降雨条件下北运河河岸带类型对径流污染削减效果的影响[J]. 环境科学, 2022, 43(2): 770-781.
[28] HUANG J C, GAO J F, YAN R H. A Phosphorus dynamic model for lowland polder systems (PDP)[J]. Ecological Engineering, 2016, 88: 242-255. doi: 10.1016/j.ecoleng.2015.12.033
[29] 储茵, 汪丽婷, 马友华, 等. 巢湖沿岸典型圩区夏季水稻生长期营养盐输出特征研究[J]. 水土保持学报, 2010, 24(5): 135-140.
[30] HUA L, ZHAI L, LIU J, et al. Effect of irrigation-drainage unit on phosphorus interception in paddy field system[J]. Journal of Environmental Management, 2019, 235: 319-327.
[31] 华玲玲, 张富林, 翟丽梅, 等. 江汉平原水稻季灌排单元沟渠中氮磷变化特征及其环境风险[J]. 环境科学, 2018, 39(6): 2715-2723.
[32] 张富林, 吴茂前, 夏颖, 等. 江汉平原稻田田面水氮磷变化特征研究[J]. 土壤学报, 2019, 56(5): 1190-1200. doi: 10.11766/trxb201811230529
[33] DUAN J J, SHU T, XUE L I, et al. Nitrogen removal efficiency in sustainable eco-ditches with floating ryegrass mats: The effect of loading (hydraulic and nitrogen) and water level on N removal[J]. Ecological Engineering, 2023, 187: 106872. doi: 10.1016/j.ecoleng.2022.106872
[34] ROZEMEIJER J C, VISSER A, BORREN W, et al. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport[J]. Hydrology and Earth System Sciences, 2016, 20(1): 347-358. doi: 10.5194/hess-20-347-2016
[35] YU L , ROZEMEIJER J C, BROERS H P, et al. Drivers of nitrogen and phosphorus dynamics in a groundwater-fed urban catchment revealed by high-frequency monitoring[J]. Hydrology and Earth System Sciences, 2021, 25(1): 69-87.
[36] GEBUS-CZUPYT B, WACH B. Application of δ18O-PO4 analysis to recognize phosphate pollutions in eutrophic water[J]. Ecohydrology & Hydrobiology, 2022, 22(1): 21-39.
[37] 张洪, 薛雪, 郁达伟, 等. 鄱阳湖水位对沉积物磷释放的影响及总磷考核建议[J]. 人民长江, 2023, 54(1): 46-52.
[38] 朱利英, 郁达伟, 章美良, 等. 水位对鄱阳湖赣江三角洲典型断面水环境质量变化的影响[J]. 环境科学学报, 2023, 43(11): 115-124.
[39] CHEN Y Y, DUO L H, ZHAO D X, et al. The response of ecosystem vulnerability to climate change and human activities in the Poyang lake city group, China[J]. Environmental Research, 2023, 233: 116473. doi: 10.1016/j.envres.2023.116473
[40] LIU Z, WANG X H, JIA S Q, et al. Eutrophication causes analysis under the influencing of anthropogenic activities in China's largest fresh water lake (Poyang Lake): Evidence from hydrogeochemistry and reverse simulation methods[J]. Journal of Hydrology, 2023, 625: 130020. doi: 10.1016/j.jhydrol.2023.130020
[41] 王朔月, 高扬, 陆瑶, 等. 鄱阳湖多尺度流域磷源输送特征及其生态效应[J]. 环境科学, 2020, 41(7): 3186-3193.
[42] 刘文强, 郁达伟, 李昆, 等. 降雨特征对赣江南昌段河流断面不同水期的水质影响分析[J]. 环境工程, 2023, 41(8): 91-99.
[43] 高田田, 谢晖, 万能胜, 等. 巢湖典型农村流域面源氮磷污染模拟及来源解析[J]. 农业环境科学学报, 2022, 41(11): 2428-2438. doi: 10.11654/jaes.2022-0231
[44] ZHANG J, HUANG J C, QIAN R, et al. Lowland artificial watersheds with unique nutrient transport: Response to natural and anthropogenic drivers[J]. Journal of Hydrology, 2023, 622(B): 129635.
[45] 马莹, 孙鹏, 许占军, 等. 基于微生物载体技术的沟渠生态修复治理体系的构建及工程应用[J]. 环境工程学报, 2022, 16(5): 1721-1729. doi: 10.12030/j.cjee.202112152
[46] CUI Z, HUANG J C, GAO J F, et al. Characterizing the impacts of macrophyte-dominated ponds on nitrogen sources and sinks by coupling multiscale models[J]. Science of the Total Environment, 2022, 811: 152208. doi: 10.1016/j.scitotenv.2021.152208