[1] |
COSTADONE L, SYTSMA M D. Identification and characterization of urban lakes across the continental United States[J]. Lake and Reservoir Management, 2022, 38(2): 126-138. doi: 10.1080/10402381.2021.2022044
|
[2] |
WALKER C, LUCKE T. Urban lakes as a WSUD system[M]. Approaches to Water Sensitive Urban Design: Potential, Design, Ecological Health, Urban Greening, Economics, Policies, and Community Perceptions, 2018: 269-285.
|
[3] |
JIGE S B. Impact of development on climate change[M]. Multidisciplinary Approaches to Sustainable Human Development, 2023: 206-219.
|
[4] |
TEURLINCX S, KUIPER J J, HOEVENAAR E C, et al. Towards restoring urban waters: Understanding the main pressures[J]. Current Opinion in Environmental Sustainability, 2019, 36: 49-58. doi: 10.1016/j.cosust.2018.10.011
|
[5] |
KECK F, MILLET L, DEBROAS D, et al. Assessing the response of micro-eukaryotic diversity to the Great Acceleration using lake sedimentary DNA[J]. Nature Communications, 2020, 11(1): 3831. doi: 10.1038/s41467-020-17682-8
|
[6] |
LEE B J. An ecological comparison of the McHarg method with other planning initiatives in the Great Lakes Basin[J]. Landscape planning, 1982, 9(2): 147-169. doi: 10.1016/0304-3924(82)90004-1
|
[7] |
SHEN D, JIAO L L, CHANG Y, et al. Ecosystem health assessment of Yellow Sea and Bohai coastal areas[J]. Chinese Journal of Ecology, 2015, 34(8): 2362-2372.
|
[8] |
PANG Z, LIU Y, LIU Z, et al. River health assessment based on an artificial neural network; Proceedings of the lecture notes in electrical engineering, F, 2023[C].
|
[9] |
ABBASZADEH TEHRANI N, MOHD SHAFRI H Z, SALEHI S, et al. Remotely-sensed ecosystem health assessment (RSEHA) model for assessing the changes of ecosystem health of Lake Urmia Basin[J]. International Journal of Image and Data Fusion, 2022, 13(2): 180-205. doi: 10.1080/19479832.2021.1924880
|
[10] |
LI H, HAN L, YU Q, et al. Assessment on river water ecological health based on grey relation analysis in Liaohe Conservation Area[J]. Journal of Environmental Engineering Technology, 2020, 10(4): 553-561+531.
|
[11] |
张雯, 黄民生, 张廷辉, 等. 太湖湖滨带生态系统健康评价及其修复模式探讨[J]. 水生态学杂志, 2020, 41(4): 48-54.
|
[12] |
闫钟清, 李勇, 张克柔, 等. 基于PSR模型的西藏拉鲁湿地生态系统健康评价[J]. 湿地科学与管理, 2023, 19(4): 49-53. doi: 10.3969/j.issn.1673-3290.2023.04.10
|
[13] |
武汉市水务局. 2022年武汉市水资源公报[EB/OL]. [2023-04-07]. https://swj.wuhan.gov.cn/szy/202304/P020230407535564030756.pdf, 2023.
|
[14] |
许文杰, 许士国. 湖泊生态系统健康评价的熵权综合健康指数法[J]. 水土保持研究, 2008(1): 125-127.
|
[15] |
郭雪蕊. 基于水动力学的武汉市东湖水质模拟[D]. 西安: 西安理工大学: 2018.
|
[16] |
金磊, 杨义刚, 杨军. 水体浮游植物采集与鉴定[J]. Bio-101, 2021: e2003737.
|
[17] |
陈辉煌, 王文平, 杨军. 淡水浮游动物的采集及鉴定[J]. Bio-101, 2021: e2003738.
|
[18] |
曹艳霞. 漓江流域大型底栖无脊椎动物群落结构与水质生物评价[D]. 南京: 南京农业大学, 2012.
|
[19] |
刘雷. 湖泊沉积物甲烷与汞转化微生物菌群结构分析[D]. 重庆: 西南大学, 2022.
|
[20] |
马沛明, 施练东, 张俊芳, 等. 浙江汤浦水库浮游植物季节演替及其影响因子分析[J]. 环境科学, 2016, 37(12): 4560-4569.
|
[21] |
王雨路, 袁丹妮, 袁国庆, 等. 武汉东湖夏冬两季浮游动物物种多样性及群落结构研究[J]. 水生生物学报, 2020, 44(4): 877-894.
|
[22] |
KRIVORUCHKO K, GRIBOV A. Geostatistical interpolation and simulation in the presence of barriers; Proceedings of the geoENV IV—Geostatistics for Environmental Applications: Proceedings of the Fourth European Conference on Geostatistics for Environmental Applications held in Barcelona, Spain, November 27-29, 2002, F, 2004[C]. Springer.
|
[23] |
吴俊燕, 赵永晶, 王洪铸, 等. 基于底栖动物生物完整性的武汉市湖泊生态系统健康评价[J]. 水生态学杂志, 2021, 42(5): 52-61.
|
[24] |
张迪涛, 张鹏, 王司阳, 等. 基于微生物完整性指数的水生态系统健康评价——以武汉市东西湖区湖泊群为例[J]. 中国环境科学, 2023, 43(6): 3055-3067.
|
[25] |
郑小红, 肖琳, 任晶, 等. 玄武湖微囊藻水华暴发及衰退期细菌群落变化分析[J]. 环境科学, 2008(10): 2956-2962.
|
[26] |
SRIVASTAVA P, GROVER S, VERMA J, et al. Applicability and efficacy of diatom indices in water quality evaluation of the Chambal River in Central India[J]. Environmental Science and Pollution Research, 2017, 24: 25955-25976. doi: 10.1007/s11356-017-0166-0
|
[27] |
FU H, ZHANG H, HE L, et al. Energetic asymmetry connected with energy flow changes in response to eutrophication: A study of multiple fish species in subtropical shallow lakes[J]. Polish Journal of Ecology, 2019, 67(4): 305-315.
|
[28] |
BONADA N, BOGAN M T. Benthic Animals[M]. Wetzel's Limnology: Lake and River Ecosystems, Fourth Edition, 2023: 621-656.
|
[29] |
池仕运, 邓燕青, 胡菊香, 等. 江西省浅水湖泊大型底栖无脊椎动物多样性特征和影响因素[J]. 湖泊科学, 2024, 36(3): 858-869.
|
[30] |
KORNIJÓW R, DUKOWSKA M, et al. Distribution patterns of epiphytic reed-associated macroinvertebrate communities across European shallow lakes[J]. Science of the total Environment, 2021, 760: 144117. doi: 10.1016/j.scitotenv.2020.144117
|
[31] |
VILMI A, KARJALAINEN S M, NOKELA T, et al. Unravelling the drivers of aquatic communities using disparate organismal groups and different taxonomic levels[J]. Ecological Indicators, 2016, 60: 108-118. doi: 10.1016/j.ecolind.2015.06.023
|
[32] |
JWAIDEH M A, SUTANUDJAJA E H, DALIN C. Global impacts of nitrogen and phosphorus fertiliser use for major crops on aquatic biodiversity[J]. The International Journal of Life Cycle Assessment, 2022, 27(8): 1058-1080. doi: 10.1007/s11367-022-02078-1
|
[33] |
SHAKER R R, YAKUBOV A D, NICK S M, et al. Predicting aquatic invasion in Adirondack lakes: A spatial analysis of lake and landscape characteristics[J]. Ecosphere, 2017, 8(3): e01723. doi: 10.1002/ecs2.1723
|
[34] |
ZHOU L, WANG X, ZHANG X, et al. Spatiotemporal variations in nitrogen and phosphorus in a large man-made lake and their relationships with human activities[J]. Water (Switzerland), 2020, 12(4): 1106.
|
[35] |
VERBURG P, HORROX J, CHANEY E, et al. Nutrient ratios, differential retention, and the effect on nutrient limitation in a deep oligotrophic lake[J]. Hydrobiologia, 2013, 718(1): 119-130. doi: 10.1007/s10750-013-1609-3
|
[36] |
林秋奇. 流溪河水库后生浮游动物多样性与群落结构的时空异质性[D]. 广州: 暨南大学, 2007.
|
[37] |
LOBRY J, DAVID V, PASQUAUD S, et al. Diversity and stability of an estuarine trophic network[J]. Marine Ecology Progress Series, 2008, 358: 13-25. doi: 10.3354/meps07294
|
[38] |
JANSSON A, KLAIS-PEETS R, GRINIENĖ E, et al. Functional shifts in estuarine zooplankton in response to climate variability[J]. Ecology and evolution, 2020, 10(20): 11591-11606. doi: 10.1002/ece3.6793
|
[39] |
ATHIRA T, NEFLA A, SHIFA C, et al. The impact of long-term environmental change on zooplankton along the southwestern coast of India[J]. Environmental Monitoring and Assessment, 2022, 194(4): 316. doi: 10.1007/s10661-022-09921-w
|
[40] |
JOSUÉ I I, CARDOSO S J, MIRANDA M, et al. Cyanobacteria dominance drives zooplankton functional dispersion[J]. Hydrobiologia, 2019, 831: 149-161. doi: 10.1007/s10750-018-3710-0
|
[41] |
KYATHANAHALLY S P, HARDEMAN T, MERZ E, et al. Deep learning classification of lake zooplankton[J]. Frontiers in microbiology, 2021, 12: 746297. doi: 10.3389/fmicb.2021.746297
|
[42] |
BANERJEE A, CHAKRABARTY M, RAKSHIT N, et al. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach[J]. Ecological indicators, 2019, 100: 99-117. doi: 10.1016/j.ecolind.2018.09.051
|
[43] |
ROMAN M R, BRANDT S B, HOUDE E D, et al. Interactive effects of hypoxia and temperature on coastal pelagic zooplankton and fish[J]. Frontiers in Marine Science, 2019, 6: 139. doi: 10.3389/fmars.2019.00139
|
[44] |
CALDWELL T J, CHANDRA S, FEHER K, et al. Ecosystem response to earlier ice break-up date: Climate-driven changes to water temperature, lake-habitat-specific production, and trout habitat and resource use[J]. Global Change Biology, 2020, 26(10): 5475-5491. doi: 10.1111/gcb.15258
|
[45] |
ZHAO C, SHAO N, YANG S, et al. Integrated assessment of ecosystem health using multiple indicator species[J]. Ecological Engineering, 2019, 130: 157-168. doi: 10.1016/j.ecoleng.2019.02.016
|
[46] |
HAWKINS C P, CARLISLE D M. Biological assessments of aquatic ecosystems[M]. Encyclopedia of Inland Waters, Second Edition, 2022: 525-536.
|
[47] |
代晓颖, 徐栋, 武俊梅, 等. 2015-2019年武汉市湖泊水质时空变化[J]. 湖泊科学, 2021, 33(5): 1415-1424.
|