[1] |
JIANG Q, ZHANG Y, JIANG S, et al. Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation[J]. Chemical Engineering Journal, 2021, 403(1): 126309.
|
[2] |
ZHANG C, QIN L, DOU D C, et al. Atrazine induced oxidative stress and mitochondrial dysfunction in quail (Coturnix C. coturnix) kidney via modulating Nrf2 signaling pathway[J]. Chemosphere, 2018, 212(23): 974-982.
|
[3] |
YUE L, GE C J, FENG D, et al. Adsorption–desorption behavior of atrazine on agricultural soils in China[J]. Journal of Environmental Sciences, 2017, 57(7): 180-189.
|
[4] |
NÖDLER K, LICHA T, VOUTSA D. Twenty years later–atrazine concentrations in selected coastal waters of the Mediterranean and the Baltic Sea[J]. Marine Pollution Bulletin, 2013, 70(5): 112-118.
|
[5] |
CARMO D A, CARMO A P B, PIRES J M B, et al. Environmental behavior and toxicity of herbicides atrazine and simazine[J]. Ambiente e Agua-An Interdisciplinary Journal of Applied Science, 2013, 8(1): 133-143.
|
[6] |
SUN J T, PAN L L, ZHAN Y, et al. Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks[J]. Environmental Geochemistry and Health, 2017, 39(2): 369-378. doi: 10.1007/s10653-016-9853-x
|
[7] |
YILMAZ E, ÖZGÜR E, BERELI N, et al. Plastic antibody based surface plasmon resonance nanosensors for selective atrazine detection[J]. Materials Science and Engineering: C, 2017, 73(4): 603-610.
|
[8] |
LOOS R, LOCORO G, COMERO S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water[J]. Water Research, 2010, 44(14): 4115-4126. doi: 10.1016/j.watres.2010.05.032
|
[9] |
YUE G, JING M A, RAN J I A, et al. Impact of long-term atrazine use on groundwater safety in Jilin Province, China[J]. Journal of Integrative Agriculture, 2013, 12(2): 305-313. doi: 10.1016/S2095-3119(13)60229-4
|
[10] |
RENNER R. Atrazine linked to endocrine disruption in frogs[J]. Environmental Science & Technology, 2002, 36(3): 55-56.
|
[11] |
BOHN T, COCCO E, GOURDOL L, et al. Determination of atrazine and degradation products in Luxembourgish drinking water: origin and fate of potential endocrine-disrupting pesticides[J]. Food Additives & Contaminants: Part A, 2011, 28(8): 1041-1054.
|
[12] |
XING H, WANG Z, GAO X, et al. Atrazine and chlorpyrifos exposure induces liver autophagic response in common carp[J]. Ecotoxicology and Environmental Safety, 2015, 113(3): 52-58.
|
[13] |
HAYES T B, COLLINS A, LEE M, et al. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses[J]. Proceedings of the National Academy of sciences, 2002, 99(8): 5476-5480. doi: 10.1073/pnas.082121499
|
[14] |
MUKHERJEE D, KAR S, MANDAL A, et al. Immobilization of tannery industrial sludge in ceramic membrane preparation and hydrophobic surface modification for application in atrazine remediation from water[J]. Journal of the European Ceramic Society, 2019, 39(10): 3235-3246. doi: 10.1016/j.jeurceramsoc.2019.04.008
|
[15] |
WU B, ARNOLD W A, MA L. Photolysis of atrazine: Role of triplet dissolved organic matter and limitations of sensitizers and quenchers[J]. Water Research, 2021, 190(3): 11665.
|
[16] |
TRAN N, DROGUI P, DOAN T L, et al. Electrochemical degradation and mineralization of glyphosate herbicide[J]. Environmental Technology, 2017, 38(23): 2939-2948. doi: 10.1080/09593330.2017.1284268
|
[17] |
ZAVISKA F, DROGUI P, BLAIS J F, et al. Experimental design methodology applied to electrochemical oxidation of the herbicide atrazine using Ti/IrO2 and Ti/SnO2 circular anode electrodes[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1499-1507.
|
[18] |
WEI J, FENG Y, SUN X, et al. Effectiveness and pathways of electrochemical degradation of pretilachlor herbicides[J]. Journal of Hazardous Materials, 2011, 189(5): 84-91.
|
[19] |
SANTOS J E L, GÓMEZ M A, DE MOURA D C, et al. Removal of herbicide 1-chloro-2, 4-dinitrobenzene (DNCB) from aqueous solutions by electrochemical oxidation using boron-doped diamond (BDD) and PbO2 electrodes[J]. Journal of Hazardous Materials, 2021, 402(2): 12385.
|
[20] |
智丹, 王建兵, 周云惠, 等. 钛基锡锑阳极电化学氧化去除水中的四环素[J]. 环境工程学报, 2018, 12(1): 57-64.
|
[21] |
智丹. 臭氧氧化复合电化学活性膜去除水中四环素的研究[D]. 北京: 中国矿业大学, 2018.
|
[22] |
YOU H, CHEN Z, YU Q, et al. Preparation of a three-dimensional porous PbO2-CNTs composite electrode and study of the degradation behavior of p-nitrophenol[J]. Separation and Purification Technology, 2021, 276(23): 119406.
|
[23] |
TANG Y, LIU M, HE D, et al. Efficient electrochemical degradation of X-GN dye wastewater using porous boron-doped diamond electrode[J]. Chemosphere, 2022, 307: 135912. doi: 10.1016/j.chemosphere.2022.135912
|
[24] |
LIU H, ZHAI L, WANG P, et al. Ti/PbO2 rlectrode rfficiency in catalytic chloramphenicol degradation and its effect on antibiotic resistance genes[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15632. doi: 10.3390/ijerph192315632
|
[25] |
ZHU X, HU W, FENG C, et al. Electrochemical oxidation of aniline using Ti/RuO2-SnO2 and Ti/RuO2-IrO2 as anode[J]. Chemosphere, 2021, 269(8): 128734.
|
[26] |
ZHI D, WANG J, ZHOU Y, et al. Development of ozonation and reactive electrochemical membrane coupled process: Enhanced tetracycline mineralization and toxicity reduction[J]. Chemical Engineering Journal, 2020, 383(5): 123149.
|
[27] |
陈丹妮. 改性Ti/PbO2电极的制备及其电催化氧化降解双酚A的研究[D]. 上海: 华东理工大学, 2021.
|
[28] |
WANG W, WANG J, WANG J, et al. Enhanced treatment of p-nitrophenol and coking wastewater through electrochemical and electrochemical-ozonation coupling process utilizing a novel Ti4O7 reactive electrochemical membrane anode[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112549. doi: 10.1016/j.jece.2024.112549
|
[29] |
WANG J, ZHI D, ZHOU H, et al. Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode[J]. Water Research, 2018, 137(10): 324-334.
|
[30] |
WANG G, LIU Y, YE J, et al. Electrochemical oxidation of methyl orange by a Magnéli phase Ti4O7 anode[J]. Chemosphere, 2020, 241(4): 125084.
|
[31] |
ZHANG J, ZHOU Y, YAO B, et al. Current progress in electrochemical anodic-oxidation of pharmaceuticals: Mechanisms, influencing factors, and new technique[J]. Journal of Hazardous Materials, 2021, 418(18): 126313.
|
[32] |
ZHANG Y, HE P, ZHOU L, et al. Optimized terbium doped Ti/PbO2 dimensional stable anode as a strong tool for electrocatalytic degradation of imidacloprid waste water[J]. Ecotoxicology and Environmental Safety, 2020, 188(2): 10992.
|
[33] |
DONDAPATI J S, THIRUPPATHI A R, SALVERDA A, et al. Comparison of Pt and IrO2-Ta2O5/Ti as a counter electrode in acidic media[J]. Electrochemistry Communications, 2021, 124(3): 106946.
|
[34] |
王雪, 谢佳芳, 张健, 等. 新型自支撑锑锡氧化物电极氧化降解阿特拉津性能研究[J]. 工程科学与技术, 2024, 56(4): 46-56.
|
[35] |
智丹, 王建兵, 王维一, 等. Ti/Ti4O7阳极电化学氧化降解水中的美托洛尔[J]. 环境科学学报, 2018, 38(5): 1858-1867.
|
[36] |
赵丹荻, 贾博, 何亚鹏, 等. 掺硼金刚石阳极电催化降解甲氧苄啶抗生素及其动力学研究[J]. 环境化学, 2022, 41(10): 3425-3434.
|
[37] |
MARTÍNEZ-HUITLE C A, RODRIGO M A, SIRÉS I, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. doi: 10.1021/acs.chemrev.5b00361
|
[38] |
ZAMBRANO J, PARK H, MIN B. Enhancing electrochemical degradation of phenol at optimum pH condition with a Pt/Ti anode electrode[J]. Environmental Technology, 2020, 41(24): 3248-3259. doi: 10.1080/09593330.2019.1649468
|
[39] |
GONG C, HAN J, HE C, et al. Insights into degradation of pharmaceutical pollutant atenolol via electrochemical advanced oxidation processes with modified Ti4O7 electrode: Efficiency, stability and mechanism[J]. Environmental Research, 2023, 228(13): 115920.
|