[1] |
XIAO R, NI B J, LIU S, et al. Impacts of organics on the microbial ecology of wastewater anammox processes: Recent advances and meta-analysis[J]. Water Research, 2021, 191: 116817. doi: 10.1016/j.watres.2021.116817
|
[2] |
LACKNER S, GILBERT E M, VLAEMINCK S E, et al. Full-scale partial nitritation/anammox experiences-An application survey[J]. Water Research, 2014, 55: 292-303. doi: 10.1016/j.watres.2014.02.032
|
[3] |
CAO Y, VAN LOOSDRECHT M C M, DAIGGER G T. Mainstream partial nitritation–anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. doi: 10.1007/s00253-016-8058-7
|
[4] |
WERALUPITIYA C, WANIGATUNGE R, JOSEPH S, et al. Anammox bacteria in treating ammonium rich wastewater: Recent perspective and appraisal[J]. Bioresource Technology, 2021, 334: 125240. doi: 10.1016/j.biortech.2021.125240
|
[5] |
ZOU X, CHEN C, WANG C, et al. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: A short review[J]. Science of the Total Environment, 2021, 800: 149645. doi: 10.1016/j.scitotenv.2021.149645
|
[6] |
WANG P, LU B, LIU X, et al. Accelerating the granulation of anammox sludge in wastewater treatment with the drive of “micro-nuclei”: A review[J]. Science of the Total Environment, 2023, 860: 160238. doi: 10.1016/j.scitotenv.2022.160238
|
[7] |
XU J, WU X, ZHU N, et al. Anammox process dosed with biochars for enhanced nitrogen removal: Role of surface functional groups[J]. Science of the Total Environment, 2020, 748: 141367. doi: 10.1016/j.scitotenv.2020.141367
|
[8] |
LI R, WANG B, NIU A, et al. Application of biochar immobilized microorganisms for pollutants removal from wastewater: A review[J]. Science of the Total Environment, 2022, 837: 155563. doi: 10.1016/j.scitotenv.2022.155563
|
[9] |
付静薇, 贾紫雯, 杨晓欢, 等. 热解温度对生物炭提升厌氧氨氧化性能的影响[J]. 中国环境科学, 2022, 42(12): 5695-5702. doi: 10.3969/j.issn.1000-6923.2022.12.027
|
[10] |
ZHANG D, LI W, HOU C, et al. Aerobic granulation accelerated by biochar for the treatment of refractory wastewater[J]. Chemical Engineering Journal, 2017, 314: 88-97. doi: 10.1016/j.cej.2016.12.128
|
[11] |
WANG Z, GU Z, YANG Y, et al. Review of biochar as a novel carrier for anammox process: Material, performance and mechanisms[J]. Journal of Water Process Engineering, 2022, 50: 103277. doi: 10.1016/j.jwpe.2022.103277
|
[12] |
LI Q, JIA Z, FU J, et al. Biochar enhances partial denitrification/anammox by sustaining high rates of nitrate to nitrite reduction[J]. Bioresource Technology, 2022, 349: 126869. doi: 10.1016/j.biortech.2022.126869
|
[13] |
CHEN H, CAO S, CHEN L, et al. Biochar accelerates the start-up of the anammox process: Phenomenon and potential mechanisms[J]. Journal of Water Process Engineering, 2023, 53: 103662. doi: 10.1016/j.jwpe.2023.103662
|
[14] |
LI H, ZHANG J, ZHANG C, et al. Responses of anammox and sulfur/pyrite autotrophic denitrification in one-stage system to high nitrogen load: Performance, metabolic and bacterial community[J]. Journal of Environmental Management, 2023, 332: 117427. doi: 10.1016/j.jenvman.2023.117427
|
[15] |
SUN T, LEVIN B D A, GUZMAN J J L, et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon[J]. Nature Communications, 2017, 8(1): 14873. doi: 10.1038/ncomms14873
|
[16] |
TIAN T, QIAO S, LI X, et al. Nano-graphene induced positive effects on methanogenesis in anaerobic digestion[J]. Bioresource Technology, 2017, 224: 41-47. doi: 10.1016/j.biortech.2016.10.058
|
[17] |
COATES J D, COLE K A, CHAKRABORTY R, et al. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration[J]. Applied and Environmental Microbiology, 2002, 68(5): 2445-2452. doi: 10.1128/AEM.68.5.2445-2452.2002
|
[18] |
CHEN G, ZHANG Z, ZHANG Z, et al. Redox-active reactions in denitrification provided by biochars pyrolyzed at different temperatures[J]. Science of the Total Environment, 2018, 615: 1547-1556. doi: 10.1016/j.scitotenv.2017.09.125
|
[19] |
XU X, LIU G H, FAN Q, et al. Effects of gibberellin on the activity of anammox bacteria[J]. Journal of Environmental Management, 2018, 225: 104-111.
|
[20] |
YANG D, ZUO J, JIANG C, et al. Fast start-up of anammox process: Effects of extracellular polymeric substances addition on performance, granule properties, and bacterial community structure[J]. Journal of Environmental Management, 2023, 338: 117836. doi: 10.1016/j.jenvman.2023.117836
|
[21] |
XIE J, GUO M, XIE J, et al. COD inhibition alleviation and anammox granular sludge stability improvement by biochar addition[J]. Journal of Cleaner Production, 2022, 345: 131167. doi: 10.1016/j.jclepro.2022.131167
|
[22] |
XING B S, QIN T Y, CHEN S X, et al. Performance of the ANAMMOX process using multi- and single-fed upflow anaerobic sludge blanket reactors[J]. Bioresource Technology, 2013, 149: 310-317. doi: 10.1016/j.biortech.2013.09.066
|
[23] |
ZHANG W, ZHOU X, CAO X, et al. Accelerating anammox nitrogen removal in low intensity ultrasound-assisted ASBBR: Performance optimization, EPS characterization and microbial community analysis[J]. Science of the Total Environment, 2022, 817: 152989. doi: 10.1016/j.scitotenv.2022.152989
|
[24] |
TANG L, SU C, WANG Q, et al. Use of iron-loaded biochar to alleviate anammox performance inhibition under PFOA stress conditions: Integrated analysis of sludge characteristics and metagenomics[J]. Science of the Total Environment, 2023, 865: 161178. doi: 10.1016/j.scitotenv.2022.161178
|
[25] |
常尧枫, 郭萌蕾, 谢军祥, 等. 厌氧氨氧化脱氮除碳功能菌群结构及代谢途径[J]. 中国环境科学, 2022, 42(3): 1138-1145. doi: 10.3969/j.issn.1000-6923.2022.03.018
|
[26] |
ZHENG B, ZHANG L, GUO J, et al. Suspended sludge and biofilm shaped different anammox communities in two pilot-scale one-stage anammox reactors[J]. Bioresource Technology, 2016, 211: 273-279. doi: 10.1016/j.biortech.2016.03.049
|
[27] |
WU L, DING X, LIN Y, et al. Nitrogen removal by a novel heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter calcoaceticus TY1 under low temperatures[J]. Bioresource Technology, 2022, 353: 127148. doi: 10.1016/j.biortech.2022.127148
|
[28] |
ZHANG D, YU H, YANG Y, et al. Ecological interactions and the underlying mechanism of anammox and denitrification across the anammox enrichment with eutrophic lake sediments[J]. Microbiome, 2023, 11(1): 82. doi: 10.1186/s40168-023-01532-y
|
[29] |
TAN C, CHEN S, ZHANG H, et al. The roles of Rhodococcus ruber in denitrification with quinoline as the electron donor[J]. Science of the Total Environment, 2023, 902: 166128. doi: 10.1016/j.scitotenv.2023.166128
|
[30] |
DU J, XU B, MA L, et al. Study on denitrification of hydroponic wastewater reverse osmosis concentrate using sulfur-autotrophic denitrification[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111195. doi: 10.1016/j.jece.2023.111195
|
[31] |
SUI Q, ZHENG R, ZHANG J, et al. Successful enrichment of anammox consortium in a single-stage reactor at full-scale: The difference in response of functional genes and transcriptional expressions[J]. Chemical Engineering Journal, 2021, 426: 131935. doi: 10.1016/j.cej.2021.131935
|