[1] HOLZINGER A, KEIBLINGER K, HOLUB P, et al. AI for life: Trends in artificial intelligence for biotechnology[J]. New Biotechnology, 2023, 74: 16-24. doi: 10.1016/j.nbt.2023.02.001
[2] Statista. Artificial Intelligence: Global Investment and Trends [EB/OL]. [2024-11-10] https://www.statista.com/outlook/tmo/artificial-intelligence/worldwide#market-size.
[3] ZHONG S, ZHANG K, BAGHERI M, et al. Machine learning: new ideas and tools in environmental science and engineering[J]. Environmental Science & Technology, 2021, 55(19): 12741-12754.
[4] RUIZ-ROSERO J, RAMIREZ-GONZALEZ G, WILLIAMS J M, et al. Internet of things: A scientometric review[J]. Symmetry, 2017, 9(12): 301. doi: 10.3390/sym9120301
[5] VANECK N, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Scientometrics, 2010, 84(2): 523-538. doi: 10.1007/s11192-009-0146-3
[6] ZHU J J, DRESSEL W, PACION K, et al. ES&T in the 21st century: A data-driven analysis of research topics, interconnections, and trends in the past 20 years[J]. Environmental Science & Technology, 2021, 55(60): 3453-3464.
[7] MARCAL J, BISHOP T, HOFMAN J, et al. From pollutant removal to resource recovery: A bibliometric analysis of municipal wastewater research in Europe[J]. Chemosphere, 2021, 284: 131267. doi: 10.1016/j.chemosphere.2021.131267
[8] MORAL-MUÑOZ J A, HERRERA-VIEDMA E, SANTISTEBAN-ESPEJO A, et al. Software tools for conducting bibliometric analysis in science: An up-to-date review[J]. Profesional de la Información, 2020, 29(1): e290103.
[9] YU Y, WANG S, YU P, et al. A bibliometric analysis of emerging contaminants (ECs)(2001-2021): Evolution of hotspots and research trends[J]. Science of the Total Environment, 2024, 907: 168116. doi: 10.1016/j.scitotenv.2023.168116
[10] PERRAULT R, CLARK J. Artificial intelligence index report 2024[J]. 2024, arXiv: 2405. 19522.
[11] BIAN Y, LU Y, LI J. Research on an artificial intelligence-based professional ability evaluation system from the perspective of industry-education integration[J]. Scientific Programming, 2022(1): 4478115.
[12] Epoch AI. Compute trends across three eras of machine learning[EB/OL]. [2024-8-31]. https://epochai.org/blog/compute-trends.
[13] LIU X, LU D, ZHANG A, et al. Data-driven machine learning in environmental pollution: gains and problems[J]. Environmental Science & Technology, 2022, 56(4): 2124-2133.
[14] 李佳礼, 刘杰, 胡承志, 曲久辉. 人工智能驱动的可持续环境基础研究系统[J]. 环境工程学报, 2024, 18(5): 1205-1218.
[15] MORGAN D, JACOBS R. Opportunities and challenges for machine learning in materials science[J]. Annual Review of Materials Research, 2020, 50: 71-103. doi: 10.1146/annurev-matsci-070218-010015
[16] 齐剑川, 史文杰, 徐常青, 等. 生成式人工智能在环境工程中的应用前瞻[J]. 环境工程学报, 2024, 18(9): 2375-2380.
[17] MALVIYA A, JASPAL D. Artificial intelligence as an upcoming technology in wastewater treatment: A comprehensive review[J]. Environmental Technology Reviews, 2021, 10(1): 177-187. doi: 10.1080/21622515.2021.1913242
[18] XU Y, WANG Z, NAIRAT S, et al. Artificial intelligence-assisted prediction of effluent phosphorus in a full-scale wastewater treatment plant with missing phosphorus input and removal data[J]. ACS ES& T Water, 2023, 4(3): 880-889.
[19] ALAM G, IHSANULLAH I, NAUSHAD M, et al. Applications of artificial intelligence in water treatment for optimization and automation of adsorption processes: Recent advances and prospects[J]. Chemical Engineering Journal, 2022, 427: 130011. doi: 10.1016/j.cej.2021.130011
[20] WU YP, XU M, LIU SM. Generative artificial intelligence: a new engine for advancing environmental science and engineering[J]. Environmental Science & Technology, 2024, 58: 17524-17528.
[21] LAWRENCE N D, MONTGOMERY J. Accelerating AI for science: open data science for science[J]. Royal Society Open Science, 2024, 11(8): 231130. doi: 10.1098/rsos.231130
[22] MARGULIES F, ZEMANEK H. Man's role in man-machine systems[J]. Automatica, 1983, 19(6): 677-683. doi: 10.1016/0005-1098(83)90031-6
[23] LIEBIG L, GÜTTEL L, JOBIN A, et al. Subnational AI policy: shaping AI in a multi-level governance system[J]. AI & Society, 2024, 39(3): 1477-1490.
[24] PICHLER M, HARTIG F. Machine learning and deep learning-A review for ecologists[J]. Methods in Ecology and Evolution, 2023, 14(4): 994-1016. doi: 10.1111/2041-210X.14061
[25] MINH D, WANG H X, LI Y F, et al. Explainable artificial intelligence: A comprehensive review[J]. Artificial Intelligence Review, 2022, 55(5): 3503-3568. doi: 10.1007/s10462-021-10088-y
[26] LINARDATOS P, PAPASTEFANOPOULOS V, KOTSIANTIS S. Explainable ai: A review of machine learning interpretability methods[J]. Entropy, 2020, 23(1): 18. doi: 10.3390/e23010018
[27] NALLAKARUPPAN M K, GANGADEVI E, SHRI M L, et al. Reliable water quality prediction and parametric analysis using explainable AI models[J]. Scientific Reports, 2024, 14(1): 7520. doi: 10.1038/s41598-024-56775-y
[28] LUERS A, KOOMEY J, MASANET E, et al. Will AI accelerate or delay the race to net-zero emissions?[J]. Nature, 2024, 628(8009): 718-720. doi: 10.1038/d41586-024-01137-x
[29] TADDEO M, TSAMADOS A, COWLS J, et al. Artificial intelligence and the climate emergency: Opportunities, challenges, and recommendations[J]. One Earth, 2021, 4(6): 776-779. doi: 10.1016/j.oneear.2021.05.018
[30] YU Y, WANG JH, LIU Y, et al. Revisit the environmental impact of artificial intelligence: the overlooked carbon emission source[J]. Frontier in Environmental Science & Engineering, 2024, 18(12): 1-5.
[31] CHIEN A A, LIN L, NGUYEN H, et al. Reducing the Carbon Impact of Generative AI Inference (today and in 2035)[C]//Proceedings of the 2nd workshop on sustainable computer systems. 2023: 1-7.
[32] BAUM S D, OWE A. Artificial intelligence needs environmental ethics[J]. Ethics, Policy & Environment, 2023, 26(1): 139-143.
[33] NISHANT R, KENNEDY M, CORBETT J. Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda[J]. International Journal of Information Management, 2020, 53: 102104. doi: 10.1016/j.ijinfomgt.2020.102104