[1] 刘敏, 王碧玉, 韩炎霖, 等. MoS2/F-TiO2异质结的制备及光降解罗丹明B性能研究[J]. 环境化学, 2024, 43(5): 1693-1706. LIU M, WANG B Y, HAN Y L, et al. Study on preparation of MoS2/F-TiO2 heterojunction and its photodegradation performance on rhodamine B[J]. Environmental Chemistry, 2024, 43(5): 1693-1706 (in Chinese).
[2] NIE H Q, YANG X H, YANG S L, et al. The enhanced catalytic decomposition behaviors of RDX by using porous activated carbon loaded with nanosized metal oxides[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(10): 4255-4266. doi: 10.1007/s10973-023-11987-8
[3] MA B R, XIN S S, MA X M, et al. Preparation of ternary reduced graphene oxide/BiOBr/TiO2 nanotube arrays for photoelectrocatalytic degradation of p-chloronitrobenzene under visible light irradiation[J]. Applied Surface Science, 2021, 551: 149480. doi: 10.1016/j.apsusc.2021.149480
[4] HU C, ZHAO Q, ZANG G L, et al. Preparation and characterization of a novel Ni-doped TiO2 nanotube-modified inactive electrocatalytic electrode for the electrocatalytic degradation of phenol wastewater[J]. Electrochimica Acta, 2022, 405: 139758. doi: 10.1016/j.electacta.2021.139758
[5] WANG Y, LIANG X, WU X L, et al. Preparation of N-doped porous carbon matrix in a solid-liquid coexisted NaCl template and its applications in Li-S batteries[J]. Ionics, 2023, 29(1): 183-191. doi: 10.1007/s11581-022-04801-2
[6] 孙天奇, 陈勇号, 巫衡, 等. BiOCl/g-C3N4-Br光催化降解罗丹明B[J]. 化工环保, 2024, 44(2): 196-204. SUN T Q, CHEN Y H, WU H, et al. Photocatalytic degradation of RhB by BiOCl/g-C3N4-Br[J]. Environmental Protection of Chemical Industry, 2024, 44(2): 196-204 (in Chinese).
[7] CHENG S, GAO Y J, YAN Y L, et al. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2[J]. Journal of Energy Chemistry, 2019, 39(12): 144-151.
[8] ZHANG L Y, YOU J, LI Q W, et al. Preparation and photocatalytic properties of CdS/F-TiO2 composites[J]. Coatings, 2019, 9(12): 824.
[9] LIN Y H, HSUEH H T, CHANG C W, et al. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2: characterization, kinetics, and reaction pathways[J]. Applied Catalysis B: Environmental, 2016, 199: 1-10. doi: 10.1016/j.apcatb.2016.06.024
[10] KUANG J Y, XING Z P, YIN J W, et al. Ti3+ self-doped rutile/anatase/TiO2 (B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts[J]. Arabian Journal of Chemistry, 2020, 13(1): 2568-2578. doi: 10.1016/j.arabjc.2018.06.010
[11] YAN X Q, YUAN K, LU N, et al. The interplay of sulfur doping and surface hydroxyl in band gap engineering: mesoporous sulfur-doped TiO2, coupled with magnetite as a recyclable, efficient, visible light active photocatalyst for water purification[J]. Applied Catalysis B: Environmental, 2017, 218: 20-31. doi: 10.1016/j.apcatb.2017.06.022
[12] MANOHAR A, CHINTAGUMPALA K, KIM K H. Magnetic hyperthermia and photocatalytic degradation of rhodamine B dye using Zn-doped spinel Fe3O4 nanoparticles[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(7): 8778-8787. doi: 10.1007/s10854-021-05549-7
[13] ZHANG W R, WANG Y H, HAO M L, et al. Enhanced photocatalytic degradation of organic pollutants under visible light using Ag-modified TiO2 on activated carbon fibers[J]. Nano, 2021, 16(10): 2130009. doi: 10.1142/S1793292021300097
[14] HU F G, SUN S P, XU H L, et al. Investigation on g-C3N4/rGO/TiO2 nanocomposite with enhanced photocatalytic degradation performance[J]. Journal of Physics and Chemistry of Solids, 2021, 156: 110181.
[15] SUN S C, ZHANG J J, GAO P, et al. Full visible-light absorption of TiO2 nanotubes induced by anionic S22− doping and their greatly enhanced photocatalytic hydrogen production abilities[J]. Applied Catalysis B: Environmental, 2017, 206: 168-174. doi: 10.1016/j.apcatb.2017.01.027
[16] CHARANPAHARI A, UMARE S S, GOKHALE S P, et al. Enhanced photocatalytic activity of multi-doped TiO2 for the degradation of methyl orange[J]. Applied Catalysis A: General, 2012, 443: 96-102.
[17] MINERO C, MARIELLA G, MAURINO V, et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide−fluoride system[J]. Langmuir, 2000, 16(6): 2632-2641. doi: 10.1021/la9903301
[18] YU J C, YU J G, HO W K, et al. Effects of F-Doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chemistry of Materials, 2002, 33(47): 12-12.
[19] HAQUE E, JUN J W, JHUNG S H. Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235)[J]. Journal of Hazardous materials, 2011, 185(1): 507-511. doi: 10.1016/j.jhazmat.2010.09.035
[20] MAES M, VERMOORTELE F, ALAERTS L, et al. Separating saturated alkylaromatics from their unsaturated analogues using metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2011, 115(4): 1051-1055. doi: 10.1021/jp105637u
[21] HAQUE E, JUN J W, TALAPANENI S N, et al. Superior adsorption capacity of mesoporous carbon nitride with basic CN framework for phenol[J]. Journal of Materials Chemistry, 2010, 20(48): 10801-10803. doi: 10.1039/c0jm02974b
[22] CYCHOSZ K A, MATZGER A J. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water[J]. Langmuir, 2010, 26(22): 17198-17202.
[23] FÉREY G, SERRE C, MELLOT-DRAZNIEKS C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie (International Edition), 2004, 116(46): 6456-6461.
[24] YU C L, FAN Q Z, XIE Y, et al. Sonochemical fabrication of novel square-shaped F doped TiO2 nanocrystals with enhanced performance in photocatalytic degradation of phenol[J]. Journal of Hazardous Materials, 2012, 237: 38-45.
[25] ZHANG C F, QIU L G, KE F, et al. A novel magnetic recyclable photocatalyst based on a core–shell metal–organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye[J]. Journal of Materials Chemistry A, 2013, 1(45): 14329-14334. doi: 10.1039/c3ta13030d
[26] KE F, WANG L H, ZHU J F. Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation[J]. Nano Research, 2015, 8(6): 1834-1846.
[27] LIANG R W, LUO S G, JING F F, et al. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)[J]. Applied Catalysis B: Environmental, 2015, 176-177: 240-248. doi: 10.1016/j.apcatb.2015.04.009
[28] WANG Z C, HUANG J, AMAL R, et al. Solid-state NMR study of photocatalytic oxidation of acetaldehyde over the flame-made F-TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2018, 223: 16-21. doi: 10.1016/j.apcatb.2017.04.011
[29] JIANG J J, LONG M C, WU D Y, et al. Preparation of F-modified nanosized TiO2 and its methyl orange photodegradation mechanism[J]. Acta Physico-Chimica Sinica, 2011, 27(5): 1149-1156. doi: 10.3866/PKU.WHXB20110520
[30] HUANG J, SONG H Y, CHEN C X, et al. Facile synthesis of N-doped TiO2 nanoparticles caged in MIL-100(Fe) for photocatalytic degradation of organic dyes under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2579-2585.
[31] GHOLINEJAD M, SEYEDHAMZEH M, RAZEGHI M, et al. Iron oxide nanoparticles modified with carbon quantum nanodots for the stabilization of palladium nanoparticles: An efficient catalyst for the suzuki reaction in aqueous media under mild conditions[J]. ChemCatChem, 2016, 8(2): 441-447. doi: 10.1002/cctc.201500925
[32] HEJAZI R, MAHJOUB A R, KHAVAR A H C, et al. Fabrication of novel type visible-light-driven TiO2@MIL-100(Fe) microspheres with high photocatalytic performance for removal of organic pollutants[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 400: 112644. doi: 10.1016/j.jphotochem.2020.112644
[33] SUH M J, SHEN Y, CHAN C K, et al. Titanium dioxide–layered double hydroxide composite material for adsorption–photocatalysis of water pollutants[J]. Langmuir, 2019, 35(26): 8699-8708. doi: 10.1021/acs.langmuir.9b00539
[34] KE F, QIU L G, ZHU J F. Fe3O4@MOF core–shell magnetic microspheres as excellent catalysts for the Claisen–Schmidt condensation reaction[J]. Nanoscale, 2014, 6(3): 1596-1601. doi: 10.1039/C3NR05051C
[35] HE X, FANG H, GOSZTOLA D J, et al. Mechanistic insight into photocatalytic pathways of MIL-100(Fe)/TiO2 composites[J]. ACS Applied Materials & Interfaces, 2019, 11(13): 12516-12524.
[36] BESSEKHOUAD Y, ROBERT D, WEBER J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3): 569-580.
[37] CAO Y Y, ZHOU G Z, ZHOU R S, et al. Green synthesis of reusable multifunctional γ-Fe2O3/bentonite modified by doped TiO2 hollow spherical nanocomposite for removal of BPA[J]. Science of the Total Environment, 2020, 708: 134669. doi: 10.1016/j.scitotenv.2019.134669
[38] NI Y M, YAO L H, WANG Y, et al. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction[J]. Nanoscale, 2017, 9(32): 11596-11604. doi: 10.1039/C7NR03661B
[39] CHEN Y, LIU H, HU L, et al. Highly efficient visible-light photocatalytic performance of MOFs-derived TiO2 via heterojunction construction and oxygen vacancy engineering[J]. Chemical Physics Letters, 2023, 815: 140365.
[40] LIU L, LIU Y, WANG X G, et al. Synergistic effect of B-TiO2 and MIL-100(Fe) for high-efficiency photocatalysis in methylene blue degradation[J]. Applied Surface Science, 2021, 561: 149969. doi: 10.1016/j.apsusc.2021.149969
[41] CAO F Z, YOU M Q, HUANG L C, et al. Synthesis of C/N-TiO2@MIL-100(Fe) for highly efficient photocatalytic degradation of tetracycline under visible light irradiation[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2024, 451: 115526. doi: 10.1016/j.jphotochem.2024.115526
[42] LIU K, CHEN J F, SUN F F, et al. Enhanced degradation of azo dyes wastewater by S-scheme heterojunctions photocatalyst g-C3N4/MoS2 intimately coupled Rhodopseudomonas palustris with chitosan modified polyurethane sponge carrier[J]. International Journal of Hydrogen Energy, 2023, 48(58): 22319-22333.
[43] ALHAMAYANI A, AL-LEHAIBI M. The effect of adding hybrid nanoparticles (Al2O3-TiO2) on the performance of parabolic trough solar collectors using different thermal oils and molten salts[J]. Case Studies in Thermal Engineering, 2024, 59: 104593. doi: 10.1016/j.csite.2024.104593
[44] FAN E C, XU H L, SUN S P, et al. Significant enhancement of photocatalytic activity of g-C3N4/vermiculite composite by the introduction of nitrogen defects[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 669: 131510. doi: 10.1016/j.colsurfa.2023.131510
[45] JIANG X D, XU C H, DU J M, et al. PVDF-based nanofiber membrane decorated with Z-scheme TiO2/MIL-100(Fe) heterojunction for efficient oil/water emulsion separation and dye photocatalytic degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 688: 133605. doi: 10.1016/j.colsurfa.2024.133605
[46] LIU H Y, SUN F Y, LI X, et al. G-C3N4/TiO2/ZnIn2S4 graphene aerogel photocatalysts with double S-scheme heterostructure for improving photocatalytic multifunctional performances[J]. Composites Part B: Engineering, 2023, 259: 110746. doi: 10.1016/j.compositesb.2023.110746
[47] SHERAZ M, KIM J. Reusable MIL-100(Fe)-polyacrylonitrile-TiO2 nanofiber webs for adsorption and decomposition of toluene[J]. Chemical Engineering Journal, 2024, 496: 153542.