[1] Toxicity testing in the 21st century: a vision and a strategy[M]. Washington, DC: National Academies Press, 2007.
[2] YANG D Y, YANG H, SHI M Y, et al. Advancing food safety risk assessment in China: Development of new approach methodologies (NAMs)[J]. Frontiers in Toxicology, 2023, 5: 1292373. doi: 10.3389/ftox.2023.1292373
[3] Supporting Individual Risk Assessment during COVID-19[M]. Washington D C : National Academies Press, 2022.
[4] HAN P L, LI X H, YANG J Y, et al. Advancing toxicity predictions: A review on in vitro to in vivo extrapolation in next-generation risk assessment[J]. Environment & Health, 2024, 2(7): 499-513.
[5] HSCHMEISSER S,MICCOLI A,von BERGEN M,et al. New approach methodologies in human regulatory toxicology–Not if,but how and when![J]. Environment International, 2023(178): 108082.
[6] DENG X Y, CAO S H, HORN A L. Emerging applications of machine learning in food safety[J]. Annual Review of Food Science and Technology, 2021, 12: 513-538. doi: 10.1146/annurev-food-071720-024112
[7] ALEXANDER-WHITE C, BURY D, CRONIN M, et al. A 10-step framework for use of read-across (RAX) in next generation risk assessment (NGRA) for cosmetics safety assessment[J]. Regulatory Toxicology and Pharmacology, 2022, 129: 105094. doi: 10.1016/j.yrtph.2021.105094
[8] LIM K, PAN K, YU Z, et al. Pattern recognition based on machine learning identifies oil adulteration and edible oil mixtures[J]. Nature Communications, 2020, 11(1): 5353. doi: 10.1038/s41467-020-19137-6
[9] BOUZEMBRAK Y, MARVIN H J P. Impact of drivers of change, including climatic factors, on the occurrence of chemical food safety hazards in fruits and vegetables: A Bayesian Network approach[J]. Food Control, 2019, 97: 67-76. doi: 10.1016/j.foodcont.2018.10.021
[10] ZHENG C, SONG Y H, MA Y P. Public opinion prediction model of food safety events network based on BP neural network[J]. IOP Conference Series: Materials Science and Engineering, 2020, 719(1): 012078. doi: 10.1088/1757-899X/719/1/012078
[11] ZHANG R F, ZHOU L, ZUO M, et al. Prediction of dairy product quality risk based on extreme learning machine[C]. 2018 2nd International Conference on Data Science and Business Analytics (ICDSBA), Changsha, China, 2018: 448-456.
[12] MA Y, J HOU Y Y, LIU Y S, et al. Research of food safety risk assessment methods based on big data[C]. IEEE International Conference on Big Data Analysis (ICBDA), Hangzhou, China, 2016: 1-5.
[13] CHANG W T, Yeh Y P, WU H Y, et al. An automated alarm system for food safety by using electronic invoices[J]. PLoS One, 2020, 15(1): e0228035. doi: 10.1371/journal.pone.0228035
[14] SCHILTER B, BENIGNI R, BOOBIS A, et al. Establishing the level of safety concern for chemicals in food without the need for toxicity testing[J]. Regulatory Toxicology and Pharmacology, 2014, 68(2): 275-296. doi: 10.1016/j.yrtph.2013.08.018
[15] LI X L, CHENG W, YANG S F, et al. Establishment of a 13 genes-based molecular prediction score model to discriminate the neurotoxic potential of food relevant-chemicals[J]. Toxicology Letters, 2022, 355: 1-18. doi: 10.1016/j.toxlet.2021.10.013
[16] LI T, TONG W D, ROBERTS R, et al. DeepCarc: Deep learning-powered carcinogenicity prediction using model-level representation[J]. Frontiers in Artificial Intelligence, 2021, 4: 757780. doi: 10.3389/frai.2021.757780
[17] RUIZ-SAAVEDRA S, GARCÍA-GONZÁLEZ H, ARBOLEYA S, et al. Intestinal microbiota alterations by dietary exposure to chemicals from food cooking and processing. Application of data science for risk prediction[J]. Computational and Structural Biotechnology Journal, 2021, 19: 1081-1091. doi: 10.1016/j.csbj.2021.01.037
[18] WANG C C, LIANG Y C, WANG S S, et al. A machine learning-driven approach for prioritizing food contact chemicals of carcinogenic concern based on complementary in silico methods[J]. Food and Chemical Toxicology, 2022, 160: 112802. doi: 10.1016/j.fct.2021.112802
[19] 佘僧, 李熠, 宋洪波, 等. 稳定同位素技术在蜂蜜真实性溯源中的研究进展[J]. 食品工业科技, 2018, 39(17): 300-304,308. SHE S, LI Y, SONG H B, et al. Research progress of stable isotope ratio mass spectrometry for authenticity and traceability in honey[J]. Science and Technology of Food Industry, 2018, 39(17): 300-304,308 (in Chinese).
[20] 杜晓宁, 张鹏帅, 雷雯, 等. 稳定同位素技术在我国食品安全检测领域的应用进展[J]. 同位素, 2019, 32(3): 231-243. doi: 10.7538/tws.2019.32.03.0231 DU X N, ZHANG P S, LEI W, et al. Application of stable isotope technique in food safety field[J]. Journal of Isotopes, 2019, 32(3): 231-243 (in Chinese). doi: 10.7538/tws.2019.32.03.0231
[21] ERDÉLYI D, KERN Z, NYITRAI T, et al. Predicting the spatial distribution of stable isotopes in precipitation using a machine learning approach: A comparative assessment of random forest variants[J]. GEM - International Journal on Geomathematics, 2023, 14(1): 14. doi: 10.1007/s13137-023-00224-x
[22] 王中钰, 陈景文, 傅志强, 等. QSAR模型应用域的表征方法[J]. 科学通报, 2022, 67(3): 255-266. doi: 10.1360/TB-2021-0406 WANG Z Y, CHEN J W, FU Z Q, et al. Characterization of applicability domains for QSAR models[J]. Chinese Science Bulletin, 2022, 67(3): 255-266 (in Chinese). doi: 10.1360/TB-2021-0406
[23] TROPSHA A, ISAYEV O, VARNEK A, et al. Integrating QSAR modelling and deep learning in drug discovery: The emergence of deep QSAR[J]. Nature Reviews. Drug Discovery, 2024, 23(2): 141-155. doi: 10.1038/s41573-023-00832-0
[24] BHHATARAI B, WILSON D M, PRICE P S, et al. Evaluation of OASIS QSAR models using ToxCast™ in vitro estrogen and androgen receptor binding data and application in an integrated endocrine screening approach[J]. Environmental Health Perspectives, 2016, 124(9): 1453-1461. doi: 10.1289/EHP184
[25] RYU J Y, KIM H U, LEE S Y. Deep learning improves prediction of drug-drug and drug-food interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(18): E4304-E4311.
[26] RUSSO D P, ZORN K M, CLARK A M, et al. Comparing multiple machine learning algorithms and metrics for estrogen receptor binding prediction[J]. Molecular Pharmaceutics, 2018, 15(10): 4361-4370. doi: 10.1021/acs.molpharmaceut.8b00546
[27] IDAKWO G, THANGAPANDIAN S, LUTTRELL J 4th, et al. Deep learning-based structure-activity relationship modeling for multi-category toxicity classification: A case study of 10K Tox21 chemicals with high-throughput cell-based androgen receptor bioassay data[J]. Frontiers in Physiology, 2019, 10: 1044. doi: 10.3389/fphys.2019.01044
[28] WANG H, LIU R F, SCHYMAN P, et al. Deep neural network models for predicting chemically induced liver toxicity endpoints from transcriptomic responses[J]. Frontiers in Pharmacology, 2019, 10: 42. doi: 10.3389/fphar.2019.00042
[29] FERNANDEZ M, BAN F Q, WOO G, et al. Toxic colors: The use of deep learning for predicting toxicity of compounds merely from their graphic images[J]. Journal of Chemical Information and Modeling, 2018, 58(8): 1533-1543. doi: 10.1021/acs.jcim.8b00338
[30] GOH G B, SIEGEL C, VISHNU A, et al. Chemception: A deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models[EB/OL]. 2017: 1706.06689.
[31] van LEEUWEN K, SCHULTZ T W, HENRY T, et al. Using chemical categories to fill data gaps in hazard assessment[J]. SAR and QSAR in Environmental Research, 2009, 20(3/4): 207-220.
[32] CHATTERJEE M, ROY K. Chemical similarity and machine learning-based approaches for the prediction of aquatic toxicity of binary and multicomponent pharmaceutical and pesticide mixtures against Aliivibrio fischeri[J]. Chemosphere, 2022, 308: 136463. doi: 10.1016/j.chemosphere.2022.136463
[33] HARTUNG T. Making big sense from big data in toxicology by read-across[J]. ALTEX, 2016, 33(2): 83-93.
[34] BANERJEE A, ROY K. Machine-learning-based similarity meets traditional QSAR: “q-RASAR” for the enhancement of the external predictivity and detection of prediction confidence outliers in an hERG toxicity dataset[J]. Chemometrics and Intelligent Laboratory Systems, 2023, 237: 104829. doi: 10.1016/j.chemolab.2023.104829
[35] YANG C, RATHMAN J F, MOSTRAG A, et al. High throughput read-across for screening a large inventory of related structures by balancing artificial intelligence/machine learning and human knowledge[J]. Chemical Research in Toxicology, 2023, 36(7): 1081-1106. doi: 10.1021/acs.chemrestox.3c00062
[36] 潘柳萌, 吕翾, 庄树林. 分子动力学模拟在有机污染物毒性作用机制中的应用[J]. 科学通报, 2015, 60(19): 1781-1788. doi: 10.1360/N972015-00118 PAN L M, LÜ X, ZHUANG S L. The application of molecular dynamics simulations in mechanism of toxicity of organic contaminants[J]. Chinese Science Bulletin, 2015, 60(19): 1781-1788 (in Chinese). doi: 10.1360/N972015-00118
[37] ZHANG Y J, LI S Y, MENG K, et al. Machine learning for sequence and structure-based protein-ligand interaction prediction[J]. Journal of Chemical Information and Modeling, 2024, 64(5): 1456-1472. doi: 10.1021/acs.jcim.3c01841
[38] LI Y Q, HSIEH C Y, LU R Q, et al. An adaptive graph learning method for automated molecular interactions and properties predictions[J]. Nature Machine Intelligence, 2022, 4: 645-651. doi: 10.1038/s42256-022-00501-8
[39] MASTROPIETRO A, PASCULLI G, BAJORATH J. Learning characteristics of graph neural networks predicting protein–ligand affinities[J]. Nature Machine Intelligence, 2023, 5: 1427-1436. doi: 10.1038/s42256-023-00756-9
[40] 张家晨, 张良, 庄树林. 分子起始事件在计算毒理学中的研究展望[J]. 环境化学, 2021, 40(9): 2629-2632. doi: 10.7524/j.issn.0254-6108.2021032602 ZHANG J C, ZHANG L, ZHUANG S L. Perspective of molecular initiating events in computational toxicology[J]. Environmental Chemistry, 2021, 40(9): 2629-2632 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021032602
[41] 谭皓月, 张荣, 陈钦畅, 等. 基于计算毒理的环境污染物-生物大分子的相互作用研究[J]. 科学通报, 2022, 67(35): 4180-4191. doi: 10.1360/TB-2022-0613 TAN H Y, ZHANG R, CHEN Q C, et al. Computational toxicology studies on the interactions between environmental contaminants and biomacromolecules[J]. Chinese Science Bulletin, 2022, 67(35): 4180-4191 (in Chinese). doi: 10.1360/TB-2022-0613
[42] PANEL ON CONTAMINANTS IN THE FOOD CHAIN (EFSA CONTAM PANEL) E F S A, SCHRENK D, BIGNAMI M, et al. Risk to human health related to the presence of perfluoroalkyl substances in food[J]. EFSA Journal. European Food Safety Authority, 2020, 18(9): e06223.
[43] SHARMA R, KAMBLE S S, GUNASEKARAN A, et al. A systematic literature review on machine learning applications for sustainable agriculture supply chain performance[J]. Computers & Operations Research, 2020, 119: 104926.
[44] PANSARI A, FAISAL M, JAMEI M, et al. Prediction of basic drug exposure in milk using a lactation model algorithm integrated within a physiologically based pharmacokinetic model[J]. Biopharmaceutics & Drug Disposition, 2022, 43(5): 201-212.
[45] TAO T P, MASCHMEYER I, LeCLUYSE E L, et al. Development of a microphysiological skin-liver-thyroid Chip3 model and its application to evaluate the effects on thyroid hormones of topically applied cosmetic ingredients under consumer-relevant conditions[J]. Frontiers in Pharmacology, 2023, 14: 1076254. doi: 10.3389/fphar.2023.1076254
[46] McNALLY K, LOIZOU G. Refinement and calibration of a human PBPK model for the plasticiser, Di-(2-propylheptyl) phthalate (DPHP) using in silico, in vitro and human biomonitoring data[J]. Frontiers in Pharmacology, 2023, 14: 1111433. doi: 10.3389/fphar.2023.1111433
[47] NAJJAR A, PUNT A, WAMBAUGH J, et al. Towards best use and regulatory acceptance of generic physiologically based kinetic (PBK) models for in vitro-to-in vivo extrapolation (IVIVE) in chemical risk assessment[J]. Archives of Toxicology, 2022, 96(12): 3407-3419. doi: 10.1007/s00204-022-03356-5
[48] MYUNG Y, de SÁ A G C, ASCHER D B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction[J]. Nucleic Acids Research, 2024, 52(W1): W469-W475. doi: 10.1093/nar/gkae254
[49] ZHANG S Y, WANG Z Y, CHEN J W, et al. Multimodal model to predict tissue-to-blood partition coefficients of chemicals in mammals and fish[J]. Environmental Science & Technology, 2024, 58(4): 1944-1953.
[50] ALGHARABLY E A, Di CONSIGLIO E, TESTAI E, et al. Prediction of in vivo prenatal chlorpyrifos exposure leading to developmental neurotoxicity in humans based on in vitro toxicity data by quantitative in vitro-in vivo extrapolation[J]. Frontiers in Pharmacology, 2023, 14: 1136174. doi: 10.3389/fphar.2023.1136174