[1] |
URBAN F E, GOLDSTEIN H L, FULTON R, et al. Unseen dust emission and global dust abundance: Documenting dust emission from the mojave desert (USA) by daily remote camera imagery and wind-erosion measurements[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8735-8753. doi: 10.1029/2018JD028466
|
[2] |
WU C L, LIN Z H, LIU X H. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models[J]. Atmospheric Chemistry and Physics, 2020, 20(17): 10401-10425. doi: 10.5194/acp-20-10401-2020
|
[3] |
YU Y, GINOUX P. Enhanced dust emission following large wildfires due to vegetation disturbance[J]. Nature Geoscience, 2022, 15: 878-884. doi: 10.1038/s41561-022-01046-6
|
[4] |
CHEN W X, MENG H, SONG H Q, et al. Progress in dust modelling, global dust budgets, and soil organic carbon dynamics[J]. Land, 2022, 11(2): 176. doi: 10.3390/land11020176
|
[5] |
田雨, 潘小乐, 姚维杰, 等. 基于颗粒物光学检测技术的大气沙尘气溶胶形貌、混合态研究进展[J]. 大气与环境光学学报, 2022, 17(1): 65-91. doi: 10.3969/j.issn.1673-6141.2022.01.005
TIAN Y, PAN X L, YAO W J, et al. Research progress on atmospheric aerosol morphology and mixing state properties based on particle optical detection technology[J]. Journal of Atmospheric and Environmental Optics, 2022, 17(1): 65-91 (in Chinese). doi: 10.3969/j.issn.1673-6141.2022.01.005
|
[6] |
ZHANG T L, ZHENG M, SUN X G, et al. Environmental impacts of three Asian dust events in the Northern China and the northwestern Pacific in spring 2021[J]. The Science of the Total Environment, 2023, 859(Pt 1): 160230.
|
[7] |
雷蕾, 张金谱, 裴成磊, 等. 2021年一次春季北方沙尘过程对广州空气质量的影响[J]. 环境科学学报, 2023, 43(1): 247-254.
LEI L, ZHANG J P, PEI C L, et al. Influence of a northern dust weather process on air quality of Guangzhou in spring 2021[J]. Acta Scientiae Circumstantiae, 2023, 43(1): 247-254 (in Chinese).
|
[8] |
尹志聪, 霍芊伊, 麻晓晴, 等. 触发2023年春季中国北方沙尘暴的沙源累积和天气扰动机制[J]. 大气科学学报, 2023, 46(3): 321-331.
YIN Z C, HUO Q Y, MA X Q, et al. Mechanisms of dust source accumulation and synoptic disturbance triggering the 2023 spring sandstorm in Northern China[J]. Transactions of Atmospheric Sciences, 2023, 46(3): 321-331 (in Chinese).
|
[9] |
GOUDIE A, MIDDLETON N. Desert dust in the global system[M]. Berlin: Springer, 2006.
|
[10] |
SCHEUVENS D, SCHÜTZ L, KANDLER K, et al. Bulk composition of northern African dust and its source sediments—a compilation[J]. Earth-Science Reviews, 2013, 116: 170-194. doi: 10.1016/j.earscirev.2012.08.005
|
[11] |
DREWNIK M, SKIBA M, SZYMAŃSKI W, et al. Mineral composition vs. soil forming processes in loess soils—a case study from Kraków (Southern Poland)[J]. CATENA, 2014, 119: 166-173. doi: 10.1016/j.catena.2014.02.012
|
[12] |
JOSHI N, ROMANIAS M N, RIFFAULT V, et al. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory[J]. Aeolian Research, 2017, 27: 35-45. doi: 10.1016/j.aeolia.2017.06.001
|
[13] |
DONG F Q, CHEN W, DAI Q W, et al. Characterization of mineralogy and surface zeta potential of atmospheric dust fall in Northwest China[J]. Mineralogy and Petrology, 2015, 109(3): 387-395. doi: 10.1007/s00710-014-0347-1
|
[14] |
FORMENTI P, RAJOT J L, DESBOEUFS K, et al. Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D23): D00C13.
|
[15] |
ROMANÍAS M N, OURRAD H, THÉVENET F, et al. Investigating the heterogeneous interaction of VOCs with natural atmospheric particles: Adsorption of limonene and toluene on Saharan mineral dusts[J]. The Journal of Physical Chemistry. A, 2016, 120(8): 1197-1212. doi: 10.1021/acs.jpca.5b10323
|
[16] |
HANISCH F, CROWLEY J N. Ozone decomposition on Saharan dust: An experimental investigation[J]. Atmospheric Chemistry and Physics, 2003, 3(1): 119-130. doi: 10.5194/acp-3-119-2003
|
[17] |
WANG Y D, ZHOU L, WANG W G, et al. Heterogeneous uptake of formic acid and acetic acid on mineral dust and coal fly ash[J]. ACS Earth and Space Chemistry, 2020, 4(2): 202-210. doi: 10.1021/acsearthspacechem.9b00263
|
[18] |
ARYAL R, KANDEL D, ACHARYA D, et al. Unusual Sydney dust storm and its mineralogical and organic characteristics[J]. Environmental Chemistry, 2012, 9(6): 537. doi: 10.1071/EN12131
|
[19] |
NOWAK S, LAFON S, CAQUINEAU S, et al. Quantitative study of the mineralogical composition of mineral dust aerosols by X-ray diffraction[J]. Talanta, 2018, 186: 133-139. doi: 10.1016/j.talanta.2018.03.059
|
[20] |
SADRIAN M R, CALVIN W M, McCORMACK J. Contrasting mineral dust abundances from X-ray diffraction and reflectance spectroscopy[J]. Atmospheric Measurement Techniques, 2022, 15(9): 3053-3074. doi: 10.5194/amt-15-3053-2022
|
[21] |
KANDLER K, SCHÜTZ L, JÄCKEL S, et al. Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: Microphysical properties and mineralogy[J]. Tellus B: Chemical and Physical Meteorology, 2011, 63(4): 459. doi: 10.1111/j.1600-0889.2011.00546.x
|
[22] |
SENTHIL KUMAR R, RAJKUMAR P. Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses[J]. Infrared Physics & Technology, 2014, 67: 30-41.
|
[23] |
SCHLEICHER N J, DONG S F, PACKMAN H, et al. A global assessment of copper, zinc, and lead isotopes in mineral dust sources and aerosols[J]. Frontiers in Earth Science, 2020, 8: 167. doi: 10.3389/feart.2020.00167
|
[24] |
HUANG L B, ZHAO Y, LI H, et al. Kinetics of heterogeneous reaction of sulfur dioxide on authentic mineral dust: Effects of relative humidity and hydrogen peroxide[J]. Environmental Science & Technology, 2015, 49(18): 10797-10805.
|
[25] |
LI W J, SHAO L Y, SHI Z B, et al. Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): 1044-1059. doi: 10.1002/2013JD021003
|
[26] |
黄晓霞, 程宏, 蒋宁, 等. 京津风沙源治理对生态系统服务的影响及其效益核算[J]. 科学通报, 2023, 68(11): 1367-1380. doi: 10.1360/TB-2022-0295
HUANG X X, CHENG H, JIANG N, et al. Impact of the Beijing-Tianjin sandstorm source control project on ecosystem services and an evaluation of economic benefits[J]. Chinese Science Bulletin, 2023, 68(11): 1367-1380 (in Chinese). doi: 10.1360/TB-2022-0295
|
[27] |
程宏, 张恺笛, 蒋宁, 等. 京津风沙源地表释尘到达典型城市沙尘量及其源解析[J]. 科学通报, 2023, 68(7): 801-816. doi: 10.1360/TB-2022-0477
CHENG H, ZHANG K D, JIANG N, et al. Dust amount reaching typical cities from dust emissions due to soil wind erosion in Beijing-Tianjin sandstorm source regions and its source analysis[J]. Chinese Science Bulletin, 2023, 68(7): 801-816 (in Chinese). doi: 10.1360/TB-2022-0477
|
[28] |
YANG J D, LI G J, RAO W B, et al. Isotopic evidences for provenance of East Asian dust[J]. Atmospheric Environment, 2009, 43(29): 4481-4490. doi: 10.1016/j.atmosenv.2009.06.035
|
[29] |
LI G, CHEN J, JI J, et al. Natural and anthropogenic sources of East Asian dust[J]. Geology, 2009, 37(8): 727-730. doi: 10.1130/G30031A.1
|
[30] |
DEWAN N, MAJESTIC B J, KETTERER M E, et al. Stable isotopes of lead and strontium as tracers of sources of airborne particulate matter in Kyrgyzstan[J]. Atmospheric Environment, 2015, 120: 438-446. doi: 10.1016/j.atmosenv.2015.09.017
|
[31] |
ERHARDT A M, DOUGLAS G, JACOBSON A D, et al. Assessing sedimentary detrital Pb isotopes as a dust tracer in the Pacific Ocean[J]. Paleoceanography and Paleoclimatology, 2021, 36(4): e2020PA004144. doi: 10.1029/2020PA004144
|
[32] |
CHEN S Y, ZHAO D, HUANG J P, et al. Mongolia contributed more than 42% of the dust concentrations in Northern China in March and April 2023[J]. Advances in Atmospheric Sciences, 2023, 40(9): 1549-1557. doi: 10.1007/s00376-023-3062-1
|
[33] |
RIZZOLO J A, BARBOSA C G G, BORILLO G C, et al. Soluble iron nutrients in Saharan dust over the central Amazon rainforest[J]. Atmospheric Chemistry and Physics, 2017, 17(4): 2673-2687. doi: 10.5194/acp-17-2673-2017
|
[34] |
SALMABADI H, KHALIDY R, SAEEDI M. Transport routes and potential source regions of the Middle Eastern dust over Ahvaz during 2005–2017[J]. Atmospheric Research, 2020, 241: 104947. doi: 10.1016/j.atmosres.2020.104947
|
[35] |
CHEN K Y. The northern path of Asian dust transport from the Gobi Desert to North America[J]. Atmospheric and Oceanic Science Letters, 2010, 3(3): 155-159. doi: 10.1080/16742834.2010.11446858
|
[36] |
CROWLEY J N, AMMANN M, COX R A, et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V–heterogeneous reactions on solid substrates[J]. Atmospheric Chemistry and Physics, 2010, 10(18): 9059-9223. doi: 10.5194/acp-10-9059-2010
|
[37] |
PARK J Y, JANG M. Heterogeneous photooxidation of sulfur dioxide in the presence of airborne mineral dust particles[J]. RSC Advances, 2016, 6(63): 58617-58627. doi: 10.1039/C6RA09601H
|
[38] |
TANG M J, HUANG X, LU K D, et al. Heterogeneous reactions of mineral dust aerosol: Implications for tropospheric oxidation capacity[J]. Atmospheric Chemistry and Physics, 2017, 17(19): 11727-11777. doi: 10.5194/acp-17-11727-2017
|
[39] |
UNDERWOOD G M, SONG C H, PHADNIS M, et al. Heterogeneous reactions of NO2 and HNO3 on oxides and mineral dust: A combined laboratory and modeling study[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D16): 18055-18066. doi: 10.1029/2000JD900552
|
[40] |
TANG M J, CZICZO D J, GRASSIAN V H. Interactions of water with mineral dust aerosol: Water adsorption, hygroscopicity, cloud condensation, and ice nucleation[J]. Chemical Reviews, 2016, 116(7): 4205-4259. doi: 10.1021/acs.chemrev.5b00529
|
[41] |
MOGILI P K, KLEIBER P D, YOUNG M A, et al. Heterogeneous uptake of ozone on reactive components of mineral dust aerosol: An environmental aerosol reaction chamber study[J]. The Journal of Physical Chemistry. A, 2006, 110(51): 13799-13807. doi: 10.1021/jp063620g
|
[42] |
GUSTAFSSON R J, ORLOV A, BADGER C L, et al. A comprehensive evaluation of water uptake on atmospherically relevant mineral surfaces: DRIFT spectroscopy, thermogravimetric analysis and aerosol growth measurements[J]. Atmospheric Chemistry and Physics, 2005, 5(12): 3415-3421. doi: 10.5194/acp-5-3415-2005
|
[43] |
IBRAHIM S, ROMANIAS M N, ALLEMAN L Y, et al. Water interaction with mineral dust aerosol: Particle size and hygroscopic properties of dust[J]. ACS Earth and Space Chemistry, 2018, 2(4): 376-386. doi: 10.1021/acsearthspacechem.7b00152
|
[44] |
CHEN L, PENG C, GU W J, et al. On mineral dust aerosol hygroscopicity[J]. Atmospheric Chemistry and Physics, 2020, 20(21): 13611-13626. doi: 10.5194/acp-20-13611-2020
|
[45] |
GU W J, LI Y J, ZHU J X, et al. Investigation of water adsorption and hygroscopicity of atmospherically relevant particles using acommercial vapor sorption analyzer[J]. Atmospheric Measurement Techniques, 2017, 10(10): 3821-3832. doi: 10.5194/amt-10-3821-2017
|
[46] |
GOODMAN A L, BERNARD E T, GRASSIAN V H. Spectroscopic study of nitric acid and water adsorption on oxide particles: enhanced nitric acid uptake kinetics in the presence of adsorbed water[J]. The Journal of Physical Chemistry A, 2001, 105(26): 6443-6457. doi: 10.1021/jp003722l
|
[47] |
SONG X W, BOILY J F. Water vapor adsorption on goethite[J]. Environmental Science & Technology, 2013, 47(13): 7171-7177.
|
[48] |
TANG M J, CHAN C K, LI Y J, et al. A review of experimental techniques for aerosol hygroscopicity studies[J]. Atmospheric Chemistry and Physics, 2019, 19(19): 12631-12686. doi: 10.5194/acp-19-12631-2019
|
[49] |
MA Q X, HE H. Synergistic effect in the humidifying process of atmospheric relevant calcium nitrate, calcite and oxalic acid mixtures[J]. Atmospheric Environment, 2012, 50: 97-102. doi: 10.1016/j.atmosenv.2011.12.057
|
[50] |
YU Z C, JANG M. Simulation of heterogeneous photooxidation of SO2 and NO x in the presence of Gobi Desert dust particles under ambient sunlight[J]. Atmospheric Chemistry and Physics, 2018, 18(19): 14609-14622. doi: 10.5194/acp-18-14609-2018
|
[51] |
YU Z C, JANG M, PARK J. Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2[J]. Atmospheric Chemistry and Physics, 2017, 17(16): 10001-10017. doi: 10.5194/acp-17-10001-2017
|
[52] |
SCHMIDT M, JANSEN van BEEK S M, ABOU-GHANEM M, et al. Production of atmospheric organosulfates via mineral-mediated photochemistry[J]. ACS Earth and Space Chemistry, 2019, 3(3): 424-431. doi: 10.1021/acsearthspacechem.8b00178
|
[53] |
MA Q X, ZHONG C, MA J Z, et al. Comprehensive study about the photolysis of nitrates on mineral oxides[J]. Environmental Science & Technology, 2021, 55(13): 8604-8612.
|
[54] |
CHEN H H, NANAYAKKARA C E, GRASSIAN V H. Titanium dioxide photocatalysis in atmospheric chemistry[J]. Chemical Reviews, 2012, 112(11): 5919-5948. doi: 10.1021/cr3002092
|
[55] |
QIAN R F, ZONG H X, SCHNEIDER J, et al. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview[J]. Catalysis Today, 2019, 335: 78-90. doi: 10.1016/j.cattod.2018.10.053
|
[56] |
THIEBAUD J, THÉVENET F, FITTSCHEN C. OH radicals and H2O2 molecules in the gas phase near to TiO2 surfaces[J]. The Journal of Physical Chemistry C, 2010, 114(7): 3082-3088. doi: 10.1021/jp9102542
|
[57] |
JENKIN M E, SAUNDERS S M, PILLING M J. The tropospheric degradation of volatile organic compounds: A protocol for mechanism development[J]. Atmospheric Environment, 1997, 31(1): 81-104. doi: 10.1016/S1352-2310(96)00105-7
|
[58] |
SAUNDERS S M, JENKIN M E, DERWENT R G, et al. Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part a): Tropospheric degradation of non-aromatic volatile organic compounds[J]. Atmospheric Chemistry and Physics, 2003, 3(1): 161-180. doi: 10.5194/acp-3-161-2003
|
[59] |
DUPART Y, FINE L, D’ANNA B, et al. Heterogeneous uptake of NO2 on Arizona Test Dust under UV-a irradiation: An aerosol flow tube study[J]. Aeolian Research, 2014, 15: 45-51. doi: 10.1016/j.aeolia.2013.10.001
|
[60] |
PARK J, JANG M, YU Z C. Heterogeneous photo-oxidation of SO2 in the presence of two different mineral dust particles: Gobi and Arizona dust[J]. Environmental Science & Technology, 2017, 51(17): 9605-9613.
|
[61] |
ZHOU L, WANG W G, GAI Y B, et al. Knudsen cell and smog chamber study of the heterogeneous uptake of sulfur dioxide on Chinese mineral dust[J]. Journal of Environmental Sciences (China), 2014, 26(12): 2423-2433. doi: 10.1016/j.jes.2014.04.005
|
[62] |
YU Z C, JANG M, KIM S, et al. Simulating the impact of long-range-transported Asian mineral dust on the formation of sulfate and nitrate during the KORUS-AQ campaign[J]. ACS Earth and Space Chemistry, 2020, 4(7): 1039-1049. doi: 10.1021/acsearthspacechem.0c00074
|
[63] |
LI X P, FENG L N, HUANG C C, et al. Chemical characteristics of atmospheric fallout in the south of Xi’an during the dust episodes of 2001–2012 (NW China)[J]. Atmospheric Environment, 2014, 83: 109-118. doi: 10.1016/j.atmosenv.2013.10.004
|
[64] |
USHER C. Laboratory studies of ozone uptake on processed mineral dust[J]. Atmospheric Environment, 2003, 37(38): 5337-5347. doi: 10.1016/j.atmosenv.2003.09.014
|
[65] |
CHEN H H, NAVEA J G, YOUNG M A, et al. Heterogeneous photochemistry of trace atmospheric gases with components of mineral dust aerosol[J]. The Journal of Physical Chemistry. A, 2011, 115(4): 490-499. doi: 10.1021/jp110164j
|
[66] |
CHEN H H, STANIER C O, YOUNG M A, et al. A kinetic study of ozone decomposition on illuminated oxide surfaces[J]. The Journal of Physical Chemistry. A, 2011, 115(43): 11979-11987. doi: 10.1021/jp208164v
|
[67] |
MICHEL A E, USHER C R, GRASSIAN V H. Reactive uptake of ozone on mineral oxides and mineral dusts[J]. Atmospheric Environment, 2003, 37(23): 3201-3211. doi: 10.1016/S1352-2310(03)00319-4
|
[68] |
CHANG R Y W, SULLIVAN R C, ABBATT J P D. Initial uptake of ozone on Saharan dust at atmospheric relative humidities[J]. Geophysical Research Letters, 2005, 32(14): L14815.
|
[69] |
LASNE J, ROMANIAS M N, THEVENET F. Ozone uptake by clay dusts under environmental conditions[J]. ACS Earth and Space Chemistry, 2018, 2(9): 904-914. doi: 10.1021/acsearthspacechem.8b00057
|
[70] |
FAN L, SHEN Z Z, WANG Z Y, et al. Effect of photothermal conversion on ozone uptake over deposited mineral dust[J]. The Science of the Total Environment, 2023, 871: 162047. doi: 10.1016/j.scitotenv.2023.162047
|
[71] |
ZHANG Y, SUNWOO Y, KOTAMARTHI V, et al. Photochemical oxidant processes in the presence of dust: An evaluation of the impact of dust on particulate nitrate and ozone formation[J]. Journal of Applied Meteorology and Climatology, 1994, 33(7): 813-824. doi: 10.1175/1520-0450(1994)033<0813:POPITP>2.0.CO;2
|
[72] |
CRIPPA M, GUIZZARDI D, PISONI E, et al. Global anthropogenic emissions in urban areas: Patterns, trends, and challenges[J]. Environmental Research Letters, 2021, 16(7): 074033. doi: 10.1088/1748-9326/ac00e2
|
[73] |
JOHNSTON D T. Multiple sulfur isotopes and the evolution of Earth’s surface sulfur cycle[J]. Earth-Science Reviews, 2011, 106(1/2): 161-183.
|
[74] |
MA Q X, ZHANG C Y, LIU C, et al. A review on the heterogeneous oxidation of SO2 on solid atmospheric particles: Implications for sulfate formation in haze chemistry[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(21): 1888-1911. doi: 10.1080/10643389.2023.2190315
|
[75] |
ADAMS J W, RODRIGUEZ D, COX R A. The uptake of SO2 on Saharan dust: A flow tube study[J]. Atmospheric Chemistry and Physics, 2005, 5(10): 2679-2689. doi: 10.5194/acp-5-2679-2005
|
[76] |
MA Q X, WANG L, CHU B W, et al. Contrary role of H2O and O2 in the kinetics of heterogeneous photochemical reactions of SO2 on TiO2[J]. The Journal of Physical Chemistry. A, 2019, 123(7): 1311-1318. doi: 10.1021/acs.jpca.8b11433
|
[77] |
AL-HOSNEY H A, GRASSIAN V H. Water, sulfur dioxide and nitric acid adsorption on calcium carbonate: A transmission and ATR-FTIR study[J]. Physical Chemistry Chemical Physics: PCCP, 2005, 7(6): 1266-1276. doi: 10.1039/b417872f
|
[78] |
RUAN X Y, ZHAO C, ZAVERI R A, et al. Simulations of aerosol pH in China using WRF-Chem (v4.0): Sensitivities of aerosol pH and its temporal variations during haze episodes[J]. Geoscientific Model Development, 2022, 15(15): 6143-6164. doi: 10.5194/gmd-15-6143-2022
|
[79] |
WANG Z Z, WANG T, FU H B, et al. Enhanced heterogeneous uptake of sulfur dioxide on mineral particles through modification of iron speciation during simulated cloud processing[J]. Atmospheric Chemistry and Physics, 2019, 19(19): 12569-12585. doi: 10.5194/acp-19-12569-2019
|
[80] |
WANG T, LIU Y Y, DENG Y, et al. Emerging investigator series: Heterogeneous reactions of sulfur dioxide on mineral dust nanoparticles: From single component to mixed components[J]. Environmental Science: Nano, 2018, 5(8): 1821-1833. doi: 10.1039/C8EN00376A
|
[81] |
ANGELINI M M, GARRARD R J, ROSEN S J, et al. Heterogeneous reactions of gaseous HNO3 and NO2 on the clay minerals kaolinite and pyrophyllite[J]. The Journal of Physical Chemistry. A, 2007, 111(17): 3326-3335. doi: 10.1021/jp0672656
|
[82] |
NDOUR M, D’ANNA B, GEORGE C, et al. Photoenhanced uptake of NO2 on mineral dust: Laboratory experiments and model simulations[J]. Geophysical Research Letters, 2008, 35(5): L05812.
|
[83] |
NDOUR M, NICOLAS M, D’ANNA B, et al. Photoreactivity of NO2 on mineral dusts originating from different locations of the Sahara Desert[J]. Physical Chemistry Chemical Physics, 2009, 11(9): 1312-1319. doi: 10.1039/b806441e
|
[84] |
MA Q X, LIU Y C, HE H. Synergistic effect between NO2 and SO2 in their adsorption and reaction on gamma-alumina[J]. The Journal of Physical Chemistry. A, 2008, 112(29): 6630-6635. doi: 10.1021/jp802025z
|
[85] |
LIU C, MA Q X, LIU Y C, et al. Synergistic reaction between SO2 and NO2 on mineral oxides: A potential formation pathway of sulfate aerosol[J]. Physical Chemistry Chemical Physics, 2012, 14(5): 1668-1676. doi: 10.1039/C1CP22217A
|
[86] |
CHU B W, LIU Y, LI H, et al. Photocatalytic oxidation of NO2 on TiO2: Evidence of a new source of N2 O5[J]. Angewandte Chemie (International Ed. in English), 2023, 62(25): e202304017. doi: 10.1002/anie.202304017
|
[87] |
WAGNER C, SCHUSTER G, CROWLEY J N. An aerosol flow tube study of the interaction of N2O5 with calcite, Arizona dust and quartz[J]. Atmospheric Environment, 2009, 43(32): 5001-5008. doi: 10.1016/j.atmosenv.2009.06.050
|
[88] |
TANG M J, THIESER J, SCHUSTER G, et al. Uptake of NO3 and N2O5 to Saharan dust, ambient urban aerosol and soot: A relative rate study[J]. Atmospheric Chemistry and Physics, 2010, 10(6): 2965-2974. doi: 10.5194/acp-10-2965-2010
|
[89] |
TANG M J, THIESER J, SCHUSTER G, et al. Kinetics and mechanism of the heterogeneous reaction of N2O5 with mineral dust particles[J]. Physical Chemistry Chemical Physics, 2012, 14(24): 8551-8561. doi: 10.1039/c2cp40805h
|
[90] |
MA Q X, WANG T, LIU C, et al. SO2 initiates the efficient conversion of NO2 to HONO on MgO surface[J]. Environmental Science & Technology, 2017, 51(7): 3767-3775.
|
[91] |
HE H, WANG Y S, MA Q X, et al. Mineral dust and NO x promote the conversion of SO2 to sulfate in heavy pollution days[J]. Scientific Reports, 2014, 4: 4172. doi: 10.1038/srep04172
|
[92] |
PAN X L, GE B Z, WANG Z, et al. Synergistic effect of water-soluble species and relative humidity on morphological changes in aerosol particles in the Beijing megacity during severe pollution episodes[J]. Atmospheric Chemistry and Physics, 2019, 19(1): 219-232. doi: 10.5194/acp-19-219-2019
|
[93] |
TIAN Y, PAN X L, WANG Z, et al. Transport patterns, size distributions, and depolarization characteristics of dust particles in East Asia in spring 2018[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(16): e2019JD031752. doi: 10.1029/2019JD031752
|
[94] |
GEN M S, LIANG Z C, ZHANG R F, et al. Particulate nitrate photolysis in the atmosphere[J]. Environmental Science: Atmospheres, 2022, 2(2): 111-127. doi: 10.1039/D1EA00087J
|
[95] |
RIORDAN E, MINOGUE N, HEALY D, et al. Spectroscopic and optimization modeling study of nitrous acid in aqueous solution[J]. The Journal of Physical Chemistry. A, 2005, 109(5): 779-786. doi: 10.1021/jp040269v
|
[96] |
SU H, CHENG Y F, OSWALD R, et al. Soil nitrite as a source of atmospheric HONO and OH radicals[J]. Science, 2011, 333(6049): 1616-1618. doi: 10.1126/science.1207687
|
[97] |
PENG X, WANG T, WANG W H, et al. Photodissociation of particulate nitrate as a source of daytime tropospheric Cl2[J]. Nature Communications, 2022, 13: 939. doi: 10.1038/s41467-022-28383-9
|
[98] |
FALKOVICH A H, SCHKOLNIK G, GANOR E, et al. Adsorption of organic compounds pertinent to urban environments onto mineral dust particles[J]. Journal of Geophysical Research: Atmospheres, 2004, 109(D2): D02208.
|
[99] |
WANG G H, CHENG C L, MENG J J, et al. Field observation on secondary organic aerosols during Asian dust storm periods: Formation mechanism of oxalic acid and related compounds on dust surface[J]. Atmospheric Environment, 2015, 113: 169-176. doi: 10.1016/j.atmosenv.2015.05.013
|
[100] |
LIU Q Y, LIU Y J, ZHAO Q, et al. Increases in the formation of water soluble organic nitrogen during Asian dust storm episodes[J]. Atmospheric Research, 2021, 253: 105486. doi: 10.1016/j.atmosres.2021.105486
|
[101] |
AL-HOSNEY H A, CARLOS-CUELLAR S, BALTRUSAITIS J, et al. Heterogeneous uptake and reactivity of formic acid on calcium carbonate particles: A Knudsen cell reactor, FTIR and SEM study[J]. Physical Chemistry Chemical Physics: PCCP, 2005, 7(20): 3587-3595. doi: 10.1039/b510112c
|
[102] |
LEDERER M R, STANIEC A R, COATES FUENTES Z L, et al. Heterogeneous reactions of limonene on mineral dust: Impacts of adsorbed water and nitric acid[J]. The Journal of Physical Chemistry. A, 2016, 120(48): 9545-9556. doi: 10.1021/acs.jpca.6b09865
|
[103] |
YU Z C, JANG M. Atmospheric processes of aromatic hydrocarbons in the presence of mineral dust particles in an urban environment[J]. ACS Earth and Space Chemistry, 2019, 3(11): 2404-2414. doi: 10.1021/acsearthspacechem.9b00195
|
[104] |
PONCZEK M, HAYECK N, EMMELIN C, et al. Heterogeneous photochemistry of dicarboxylic acids on mineral dust[J]. Atmospheric Environment, 2019, 212: 262-271. doi: 10.1016/j.atmosenv.2019.05.032
|
[105] |
XUE Y G, HUANG Y, HO S S H, et al. Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in Northwest China[J]. Atmospheric Chemistry and Physics, 2020, 20(9): 5425-5436. doi: 10.5194/acp-20-5425-2020
|
[106] |
BALTRUSAITIS J, SCHUTTLEFIELD J, ZEITLER E, et al. Carbon dioxide adsorption on oxide nanoparticle surfaces[J]. Chemical Engineering Journal, 2011, 170(2/3): 471-481.
|
[107] |
NANAYAKKARA C E, LARISH W A, GRASSIAN V H. Titanium dioxide nanoparticle surface reactivity with atmospheric gases, CO2, SO2, and NO2: Roles of surface hydroxyl groups and adsorbed water in the formation and stability of adsorbed products[J]. The Journal of Physical Chemistry C, 2014, 118(40): 23011-23021. doi: 10.1021/jp504402z
|
[108] |
ANPO M, YAMASHITA H, ICHIHASHI Y, et al. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts[J]. Journal of Electroanalytical Chemistry, 1995, 396(1/2): 21-26.
|
[109] |
CHO-CHING L O, HUNG C H, YUAN C S, et al. Parameter effects and reaction pathways of photoreduction of CO2 over TiO2/SO42–photocatalyst[J]. Chinese Journal of Catalysis, 2007, 28(6): 528-534. doi: 10.1016/S1872-2067(07)60046-1
|
[110] |
INDRAKANTI V P, KUBICKI J D, SCHOBERT H H. Photoinduced activation of CO2 on TiO2 surfaces: Quantum chemical modeling of CO2 adsorption on oxygen vacancies[J]. Fuel Processing Technology, 2011, 92(4): 805-811. doi: 10.1016/j.fuproc.2010.09.007
|
[111] |
DENG Y, LIU Y Y, WANG T, et al. Photochemical reaction of CO2 on atmospheric mineral dusts[J]. Atmospheric Environment, 2020, 223: 117222. doi: 10.1016/j.atmosenv.2019.117222
|
[112] |
LIU Y Y, WANG T, FANG X Z, et al. Impact of greenhouse gas CO2 on the heterogeneous reaction of SO2 on alpha-Al2O3[J]. Chinese Chemical Letters, 2020, 31(10): 2712-2716. doi: 10.1016/j.cclet.2020.04.037
|
[113] |
LIU Y Y, DENG Y, LIU J R, et al. A novel pathway of atmospheric sulfate formation through carbonate radicals[J]. Atmospheric Chemistry and Physics, 2022, 22(13): 9175-9197. doi: 10.5194/acp-22-9175-2022
|