[1] ETEBU E, ARIKEKPAR I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives[J]. Applied Microbiology and Biotechnology, 2016, 4: 90-101.
[2] KIM S C, CARLSON K. Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices[J]. Environmental Science & Technology, 2007, 41(1): 50-57.
[3] WILLE K, NOPPE H, VERHEYDEN K, et al. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater[J]. Analytical and Bioanalytical Chemistry, 2010, 397: 1797-1808. doi: 10.1007/s00216-010-3702-z
[4] MCARDELL C S, MOLNAR E, SUTER M J F, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland[J]. Environmental Science & Technology, 2003, 37(24): 5479-5486.
[5] CHENG D, LIU X, WANG L, et al. Seasonal variation and sediment–water exchange of antibiotics in a shallower large lake in North China[J]. Science of the Total Environment, 2014, 476: 266-275.
[6] BARROS-BECKER F, ROMERO J, PULGAR A, et al. Persistent oxytetracycline exposure induces an inflammatory process that improves regenerative capacity in zebrafish larvae[J]. Plos One, 2012, 7(5): e36827. doi: 10.1371/journal.pone.0036827
[7] CZEKALSKI N, BERTHOLD T, CAUCCI S, et al. Increased levels of multiresistant bacteria and resistance genes after wastewater treatment and their dissemination into Lake Geneva, Switzerland[J]. Frontiers in Microbiology, 2012, 3: 18530.
[8] MA W, YANG M, WANG J, et al. Treatment of antibiotics wastewater utilizing successive hydrolysis, denitrification and nitrification[J]. Environmental Technology, 2002, 23(6): 685-694. doi: 10.1080/09593330.2002.9619253
[9] 刘海英. 土霉素废水脱氮技术研究[D]. 石家庄: 河北科技大学, 2012.
[10] 杨俊杰. 抗生素水体污染的处理方法研究[J]. 化工管理, 2018(33): 161-162. doi: 10.3969/j.issn.1008-4800.2018.33.110
[11] 李十中, 王淀佐, 胡永平等. 膜分离法回收土霉素结晶母液中的土霉素[J]. 中国抗生素杂志, 2002(1): 25-27. doi: 10.3969/j.issn.1001-8689.2002.01.007
[12] MCCARTY P L, BAE J, KIM J. Domestic wastewater treatment as a net energy producer–can this be achieved?[J]. Environmental Science & Technology, 2011, 45(17): 7100-710.
[13] SCHERSON Y D, CRIDDLE C S. Recovery of freshwater from wastewater: upgrading process configurations to maximize energy recovery and minimize residuals[J]. Environmental Science & Technology, 2014, 48(15): 8420-8432.
[14] REN L, WANG P, WANG C, et al. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments[J]. Environmental Pollution, 2017, 220: 274-285. doi: 10.1016/j.envpol.2016.09.061
[15] UNNITHAN V V, UNC A, SMITH G B. Mini-review: a priori considerations for bacteria–algae interactions in algal biofuel systems receiving municipal wastewaters[J]. Algal Research, 2014, 4: 35-40. doi: 10.1016/j.algal.2013.11.009
[16] SHI X, YEAP T S, HUANG S, et al. Pretreatment of saline antibiotic wastewater using marine microalga[J]. Bioresource Technology, 2018, 258: 240-246. doi: 10.1016/j.biortech.2018.02.110
[17] WANG Y, HE Y, LI X, et al. Enhanced biodegradation of chlortetracycline via a microalgae-bacteria consortium[J]. Bioresource Technology, 2022, 343: 126149. doi: 10.1016/j.biortech.2021.126149
[18] ZHANG M, JI B, LIU Y. Microalgal-bacterial granular sludge process: a game changer of future municipal wastewater treatment?[J]. Science of the Total Environment, 2021, 752: 141957. doi: 10.1016/j.scitotenv.2020.141957
[19] ZENG X, GUO X, SU G, et al. Bioprocess considerations for microalgal-based wastewater treatment and biomass production[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1385-1392. doi: 10.1016/j.rser.2014.11.033
[20] 卢蕾, 马佳莹, 褚华强等. 基于菌藻共生的污水处理与资源化新技术研究进展[J]. 能源环境保护, 2023, 37(2): 156-167.
[21] 张维玮, 孙贤波, 刘勇弟. 水中土霉素的紫外光解研究[J]. 水处理技术, 2018, 44(11): 33-37.
[22] 张翠, 胡学锋, 骆永明. 模拟太阳光下水中土霉素的光化学降解[J]. 环境化学, 2016, 35(3): 430-438. doi: 10.7524/j.issn.0254-6108.2016.03.2015101303
[23] 廖芩. 好氧颗粒污泥系统处理四环素废水的效能与机理研究[D]. 重庆: 重庆大学, 2022.
[24] 国家环境保护总局. 水和废水监测分析方法 (第四版)[M]. 北京: 中国环境科学出版社, 2002.
[25] ZHANG H, SONG S, JIA Y, et al. Stress-responses of activated sludge and anaerobic sulfate-reducing bacteria sludge under long-term ciprofloxacin exposure[J]. Water Research, 2019, 164: 114964. doi: 10.1016/j.watres.2019.114964
[26] 史文燕. 四环素对SBR硝化系统脱氮性能及微生物群落结构的影响[D]. 兰州: 兰州交通大学, 2022.
[27] SONG C, SUN X F, WANG Y K, et al. Fate of tetracycline at high concentrations in enriched mixed culture system: biodegradation and behavior[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(5): 1562-1568.
[28] XU X R, LI X Y. Sorption and desorption of antibiotic tetracycline on marine sediments[J]. Chemosphere, 2010, 78(4): 430-436. doi: 10.1016/j.chemosphere.2009.10.045
[29] 何嘉伟. 基于叶绿素a测定的监测方法研究与改进[J]. 工业微生物, 2023, 53(6): 1-3. doi: 10.3969/j.issn.1001-6678.2023.06.001
[30] 武鹏鹏, 王雅学, 沈洪艳. 土霉素对斜生栅藻的毒性效应研究[J]. 生态毒理学报, 2020, 15(4): 215-223. doi: 10.7524/AJE.1673-5897.20190703001
[31] DU B, YANG Q, LI X, et al. Impacts of long-term exposure to tetracycline and sulfamethoxazole on the sludge granules in an anoxic-aerobic wastewater treatment system[J]. Science of the Total Environment, 2019, 684: 67-77. doi: 10.1016/j.scitotenv.2019.05.313
[32] WANG X, ZHANG B, SHEN Z Q, et al. The EPS characteristics of sludge in an aerobic granule membrane bioreactor[J]. Bioresource Technology, 2010, 101(21): 8046-8050. doi: 10.1016/j.biortech.2010.05.074
[33] YANG S F, LIN C F, WU C J, et al. Fate of sulfonamide antibiotics in contact with activated sludge–sorption and biodegradation[J]. Water Research, 2012, 46(4): 1301-1308. doi: 10.1016/j.watres.2011.12.035
[34] 张微. 四环素与胞外聚合物的相互作用及其对污泥耐药性的影响[D]. 上海: 东华大学, 2014.
[35] SUTHERLAND I W. Biofilm exopolysaccharides: a strong and sticky framework[J]. Microbiology, 2001, 147(1): 3-9. doi: 10.1099/00221287-147-1-3
[36] ZHUANG Y, YU F, MA J, et al. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel[J]. Journal of Colloid and Interface Science, 2017, 507: 250-259. doi: 10.1016/j.jcis.2017.07.033
[37] 邓万燕, 谢建平. 细菌核糖体靶向抗生素及耐药机制[J]. 国外医药(抗生素分册), 2017, 38(6): 20-30.
[38] 应璐瑶, 王荣昌. 菌藻共生系统削减抗生素类污染物的去除途径及胁迫响应[J]. 化工进展, 2023, 42(1): 469-479.