[1] |
ADENUSI H, CHASS G, BODO E. Theoretical insights into the structure of the aminotris(methylenephosphonic acid) (ATMP) anion: A possible partner for conducting ionic media[J]. Symmoletry, 2020, 12(6): 920-935.
|
[2] |
ROTT E, SCHöNBERGER H, MINKE R, et al. Batch studies of phosphonate adsorption on granular ferric hydroxides[J]. Water Science and Technology, 2020, 81(1): 10-20. doi: 10.2166/wst.2020.055
|
[3] |
艾思洁. 典型有机磷阻燃剂对铜绿微囊藻生长的影响及机理研究[D]. 武汉: 中南民族大学, 2022.
|
[4] |
ZHANG X, LI J, FAN W Y, SHENG G P. Photomineralization of effluent organic phosphorus to orthophosphate under simulated light illumination[J]. Environmental Science & Technology, 2019, 53(9): 4997-5004.
|
[5] |
WANG S, QIAN J, ZHANG B, et al. Unveiling the occurrence and potential ecological risks of organophosphate esters in municipal wastewater treatment plants across china[J]. Environmental Science & Technology, 2023, 57(5): 1907-1918.
|
[6] |
ROTT E, STEINMETZ H, METZGER J W. Organophosphonates: A review on environmental relevance, biodegradability and removal in wastewater treatment plants[J]. Science of the Total Environment, 2018, 615: 1176-1191. doi: 10.1016/j.scitotenv.2017.09.223
|
[7] |
WANG Z, CHEN G, PATTON S, et al. Degradation of nitrilotris-methylenephosphonic acid (NTMP) antiscalant via persulfate photolysis: Implications on desalination concentrate treatment[J]. Water Research, 2019, 159: 30-37. doi: 10.1016/j.watres.2019.04.051
|
[8] |
LEI Y, SAAKES M, VAN DER WEIJDEN R D, BUISMAN C J N. Electrochemically mediated calcium phosphate precipitation from phosphonates: Implications on phosphorus recovery from non-orthophosphate[J]. Water Research, 2020, 169: 115206. doi: 10.1016/j.watres.2019.115206
|
[9] |
ROTT E, MINKE R, STEINMETZ H. Removal of phosphorus from phosphonate-loaded industrial wastewaters via precipitation/flocculation[J]. Journal of Water Process Engineering, 2017, 17: 188-196. doi: 10.1016/j.jwpe.2017.04.008
|
[10] |
LIU Y, LU S, YANG Q, LI C. Adsorption of phosphonate antiscalant HEDP from reverse osmosis concentrates by La/FeOOH@PAC[J]. Journal of Inorganic Materials, 2021, 36(8): 841-846. doi: 10.15541/jim20200512
|
[11] |
FAN W Y, ZHANG X, GUO P C, SHENG G P. Highly efficient removal of phosphonates by ferrate-induced oxidation coupled with in situ coagulation[J]. Journal of Hazardous Materials, 2023, 451: 131104. doi: 10.1016/j.jhazmat.2023.131104
|
[12] |
MIKLOS D B, REMY C, JEKEL M, et al. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review[J]. Water Research, 2018, 139: 118-131. doi: 10.1016/j.watres.2018.03.042
|
[13] |
沈文华. 基于电生过氧化氢的高级氧化技术降解典型新兴污染物[D]. 北京: 清华大学, 2017.
|
[14] |
SUN S, SHAN C, YANG Z, et al. Self-enhanced selective oxidation of phosphonate into phosphate by Cu(II)/H2O2: Performance, mechanism, and validation[J]. Environmental Science & Technology, 2021, 56(1): 634-641.
|
[15] |
XUE G, ZHENG M, QIAN Y, et al. Comparison of aniline removal by UV/CaO2 and UV/H2O2: Degradation kinetics and mechanism[J]. Chemosphere, 2020, 255: 126983. doi: 10.1016/j.chemosphere.2020.126983
|
[16] |
BOKHARI T H, AHMAD N, JILANI M I, et al. UV/H2O2, UV/H2O2/SnO2 and Fe/H2O2 based advanced oxidation processes for the degradation of disperse violet 63 in aqueous medium[J]. Materials Research Express, 2020, 7(1): 015531. doi: 10.1088/2053-1591/ab6c15
|
[17] |
ZHONG Q, CHEN F, LI X, et al. Optimal degradation of typical phosphonate antiscalant in saline water in UV/electrochemical oxidation system: Kinetics and mechanism[J]. Journal of Water Process Engineering, 2023, 53: 103806. doi: 10.1016/j.jwpe.2023.103806
|
[18] |
ZHANG Y L, WANG W L, LEE M Y, et al. Promotive effects of vacuum-UV/UV (185/254 nm) light on elimination of recalcitrant trace organic contaminants by UV-AOPs during wastewater treatment and reclamation: A review[J]. Science of The Total Environment, 2022, 818: 151776. doi: 10.1016/j.scitotenv.2021.151776
|
[19] |
LIU Y, WU J, CHENG N, et al. The overlooked role of UV185 induced high-energy excited states in the dephosphorization of organophosphorus pesticide by VUV/persulfate[J]. Chemosphere, 2023, 334: 138993. doi: 10.1016/j.chemosphere.2023.138993
|
[20] |
Guo Z J, Wang K F, Liu M L, et al. Enhanced electrochemical harmless removal of ammolonia nitrogen and simultaneously recovery of phosphorus with peroxydisulfate activated by Fe inductive electrode[J]. Separation and Purification Technology, 2024, 343: 126918. doi: 10.1016/j.seppur.2024.126918
|
[21] |
许盛彬. 活性炭负载纳米零价铁诱发芬顿反应降解甲基橙的研究[D]. 黑龙江: 哈尔滨工业大学, 2015.
|
[22] |
HUO Y, LI M, AN Z, et al. Effect of pH on UV/H2O2-mediated removal of single, mixed and halogenated parabens from water[J]. Journal of Hazardous Materials, 2024, 462: 132818. doi: 10.1016/j.jhazmat.2023.132818
|
[23] |
SRITHEP S, PHATTARAPATTAMAWONG S. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H2O2, UV/O3, and UV/H2O2/O3)[J]. Chemosphere, 2017, 176: 25-31. doi: 10.1016/j.chemosphere.2017.02.107
|
[24] |
GUO K, WU Z, CHEN C, FANG J. UV/Chlorine process: An efficient advanced oxidation process with multiple radicals and functions in water treatment[J]. Accounts of Chemical Research, 2022, 55(3): 286-297. doi: 10.1021/acs.accounts.1c00269
|
[25] |
刘永泽. 高级氧化过程中OH·和SO4·−定量分析及溴代副产物生成规律研究[D]. 黑龙江: 哈尔滨工业大学, 2015.
|
[26] |
OH W D, DONG Z, LIM T T. Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: Current development, challenges and prospects[J]. Applied Catalysis B: Environmental, 2016, 194: 169-201. doi: 10.1016/j.apcatb.2016.04.003
|
[27] |
GU D M, GUO C S, FENG Q Y, et al. Degradation of ketamine and methamphetamine by the UV/H2O2 system: Kinetics, mechanisms and comparison[J]. Water, 2020, 12(11): 2999. doi: 10.3390/w12112999
|
[28] |
GAO X, ZHANG Q, YANG Z, et al. Formation of nitrophenolic byproducts during UV-Activated peroxydisulfate oxidation in the presence of nitrate[J]. ACS ES& T Engineering, 2022, 2(2): 222-231.
|
[29] |
MUTKE X A M, DREES F, LUTZE H V, SCHMIDT T C. Oxidation of the N-containing phosphonate antiscalants NTMP and DTPMP in reverse osmosis concentrates: Reaction kinetics and degradation rate[J]. Chemosphere, 2023, 341: 139999. doi: 10.1016/j.chemosphere.2023.139999
|
[30] |
WANG L, LI B, DIONYSIOU D D, et al. Overlooked formation of H2O2 during the hydroxyl radical-scavenging process when using alcohols as scavengers[J]. Environmental Science & Technology, 2022, 56(6): 3386-3396.
|