[1] |
王伟, 杨树成, 艾玉鑫. 氧化石墨烯修饰MoS2-PAN吸附膜对铜离子吸附性能的影响[J]. 环境工程学报, 2023, 17(1): 24-33. doi: 10.12030/j.cjee.202209018
|
[2] |
王玉婷, 赵泽华, 王逸, 等. 我国典型印染行业废水处理污泥污染特征研究[J]. 生态与农村环境学报, 2020, 36(12): 1598-1604.
|
[3] |
龙冰, 许道刚, 陈克锋, 等. 柿竹园多金属矿选矿废水处理实验研究[J]. 矿冶工程, 2020, 40(4): 81-83. doi: 10.3969/j.issn.0253-6099.2020.04.020
|
[4] |
张晨阳, 余恒, 岳彤, 等. 电镀含铜废水处理技术研究进展[J]. 中南大学学报: 自然科学版, 2022, 53(3): 13-15.
|
[5] |
王建燕, 张传巧, 陈静, 等. 新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J]. 环境科学学报, 2019, 39(8): 2575-2585.
|
[6] |
FADILA C R, OTHMAN M, ADAM M R, et al. Adsorptive membrane for heavy metal removal: Material, fabrication, and performance[J]. Materials Today: Proceedings, 2022, 65(7): 3037-3045.
|
[7] |
CHEE D N A, AZIZ F, ISMAIL A F, et al. Adsorptive zeolitic imidazolate framework-8 membrane on ceramic support for the removal of lead(II) ions[J]. Chemical Engineering Science, 2023, 276: 118775. doi: 10.1016/j.ces.2023.118775
|
[8] |
杨娜, 杨秀培, 改性柏树锯末对铜离子吸附机制研究[J]. 化学研究与应用, 2023, 35(4): 809-814.
|
[9] |
BANDEHALI S, PARVIZIAN F, MOGHADASSI A, et al. Copper and lead ions removal from water by new PEI based NF membrane modified by functionalized POSS nanoparticles[J]. Journal of Polymer Research, 2019, 26: 211. doi: 10.1007/s10965-019-1865-7
|
[10] |
孙朝辉, 刘珊, 樊升光, 等. 海藻酸钠负载聚乙烯亚胺功能球对Cu2+吸附研究[J]. 应用化工, 2018, 47(5): 849-853. doi: 10.3969/j.issn.1671-3206.2018.05.001
|
[11] |
樊红日, 何紫莹, 李健, 等. 胺基改性甲壳素气凝胶的制备及其Cu(Ⅱ)的吸附性能[J]. 化学研究与应用, 2023, 35(10): 2402-2408. doi: 10.3969/j.issn.1004-1656.2023.10.017
|
[12] |
姜艳慧, 许丽丽, 索红波, 等. 聚乙烯亚胺-磁性羧甲基纤维素复合物对铜离子和镉离子的吸附[J], 分析实验室, 2021, 10: 1135-1139.
|
[13] |
WANG J, YU W, GRAHAM N J D, et al. Evaluation of a novel polyamide-polyethylenimine nanofiltration membrane for wastewater treatment: Removal of Cu2+ ions[J]. Chemical Engineering Journal, 2020, 392: 123769. doi: 10.1016/j.cej.2019.123769
|
[14] |
杨洁, 李旋坤, 李光辉, 等. 陶瓷膜的膜污染机制与控制技术研究进展[J]. 工业水处理, 2023, 43(5): 9-15.
|
[15] |
WANG S, TIAN J, WANG Q, et al. Low-temperature sintered high-strength CuO doped ceramic hollow fiber membrane: Preparation, characterization and catalytic activity[J]. Journal of Membrane Science, 2019, 570-571: 333-342. doi: 10.1016/j.memsci.2018.10.078
|
[16] |
YANG Z, ZHOU Z W, GUO H, et al. Tannic acid/Fe3+ nanoscaffold for interfacial polymerization: Toward enhanced nanofiltration performance[J]. Environmental Science & Technology, 2018, 52: 9341-9349.
|
[17] |
HU D, JIANG R, WANG N, et al. Adsorption of diclofenac sodium on bilayer amino-functionalized cellulose nanocrystals/chitosan composite[J]. Journal of Hazardous Materials, 2019, 369: 483-493. doi: 10.1016/j.jhazmat.2019.02.057
|
[18] |
YU J, HU X, HUANG Y, A modification of the bubble-point method to determine the pore-mouth size distribution of porous materials[J]. Separation and Purification Technology, 2010, 70(3): 314-319.
|
[19] |
王向钦, 王向钦, 张鹏, 等. 润湿剂对泡点法测定纤维过滤材料孔径特征的影响[J]. 产业用纺织品, 2011, 29(5): 40-43. doi: 10.3969/j.issn.1004-7093.2011.05.010
|
[20] |
MAIER G P, RAPP M V, WAITE J H, et al. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement[J]. Science, 2015, 349(6248): 628-632. doi: 10.1126/science.aab0556
|
[21] |
FAN L, MA Y, SU Y, et al. Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes[J]. RSC Advances, 2015, 5: 107777-107784. doi: 10.1039/C5RA23490E
|
[22] |
LI Y, SU Y, LI J, et al. Preparation of thin film composite nanofiltration membrane with improved structural stability through the mediation of polydopamine[J]. Journal of Membrane Science, 2015, 476: 10-19. doi: 10.1016/j.memsci.2014.11.011
|
[23] |
ZHANG X, LV Y, YANG H C, et al. Polyphenol coating as an interlayer for thin-film composite membranes with enhanced nanofiltration performance[J]. ACS Applied Materials & Interfaces, 2016, 8: 32512-32519.
|
[24] |
YAO X, YANG Z, GUO Z, et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity[J]. Environmental Science & Technology Letters, 2018, 5(2): 123-130.
|
[25] |
HUANG Y, JIN H, LI H, et al. Synthesis and characterization of a polyamide thin film composite membrane based on a polydopamine coated support layer for forward osmosis[J]. RSC Advances, 2015, 5: 106113-106121. doi: 10.1039/C5RA20499B
|
[26] |
HOLTEN-ANDERSEN N, JAISHANKAR A, HARRINGTON M J, et al. Metal-coordination: using one of nature's tricks to control soft material mechanics[J]. Journal of Materials Chemistry B, 2014, 2: 2467-2472. doi: 10.1039/C3TB21374A
|
[27] |
ZHANG Y, SU Y, PENG J, et al. Composite nanofiltration membranes prepared by interfacial polymerization with natural material tannic acid and trimesoyl chloride[J]. Journal of Membrane Science, 2013, 429: 235-242. doi: 10.1016/j.memsci.2012.11.059
|
[28] |
TAYLOR S W, CHASE D B, EMPTAGE M H, et al. Ferric ion complexes of a DOPA-containing adhesive protein from Mytilus edulis[J]. Inorganic Chemistry, 1996, 35: 7572-7577. doi: 10.1021/ic960514s
|
[29] |
KRISHNAN P, RAJAN M, KUMARI S, et al. Efficiency of newly formulated camptothecin with β-cyclodextrin-EDTA-Fe3O4 nanoparticle-conjugated nanocarriers as an anti-colon cancer (HT29) drug[J]. Scientific reports, 2017, 7: 10962. doi: 10.1038/s41598-017-09140-1
|
[30] |
ZHANG R, SU Y, ZHAO X, et al. A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly (ethylene imine)[J]. Journal of Membrane Science, 2014, 470: 9-17. doi: 10.1016/j.memsci.2014.07.006
|
[31] |
LINDEN J B, LARSSON M, KAUR S, et al. Polyethyleneimine for copper absorption II: kinetics, selectivity and efficiency from seawater[J]. RSC Advances, 2015, 5: 51883-51890. doi: 10.1039/C5RA08029K
|
[32] |
LI J, YUAN S, ZHU J, et al. High-flux, antibacterial composite membranes via polydopamine-assisted PEI-TiO2/Ag modification for dye removal[J]. Chemical Engineering Journal, 2019, 373: 275-284. doi: 10.1016/j.cej.2019.05.048
|
[33] |
LIN J, YE W, ZENG H, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes[J]. Journal of Membrane Science, 2015, 477: 183-193. doi: 10.1016/j.memsci.2014.12.008
|
[34] |
LIU C, BAI R, SAN Q, Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms[J]. Water Research, 2008, 42(6/7): 1511-1522.
|
[35] |
SCHAEP J, VANDECASTEELE C, PEETERS B, et al. Characteristics and retention properties of a mesoporous γ-Al2O3 membrane for nanofiltration[J]. Journal of Membrane Science, 1999, 163(2): 229-237. doi: 10.1016/S0376-7388(99)00163-5
|
[36] |
FUJIE T, KAWAMOTO Y, HANIUDA H, et al. Selective molecular permeability induced by glass transition dynamics of semicrystalline polymer ultrathin films[J]. Macromolecules, 2013, 46: 395-402. doi: 10.1021/ma302081e
|
[37] |
HOLTEN-ANDERSEN N, HARRINGTON M J, BIRKEDAL H, et al. pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli[J]. Proceedings of the National Academy of Sciences, 2011, 108: 2651-2655. doi: 10.1073/pnas.1015862108
|
[38] |
HUSSAIN Z, SALIM M, KHAN M, et al. X-ray photoelectron and auger spectroscopy study of copper-sodium-germanate glasses[J]. Journal of Non-crystalline Solids, 1989, 110: 44-52. doi: 10.1016/0022-3093(89)90180-4
|
[39] |
CHOI K, LEE S, PARK J O, et al. Chromium removal from aqueous solution by a PEI-silica nanocomposite[J]. Scientific Reports, 2018, 8: 1438. doi: 10.1038/s41598-018-20017-9
|
[40] |
ZHANG H, TAYMAZOV D, LI M P, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. doi: 10.1016/j.memsci.2019.117369
|