[1] |
崔小明. 1, 4-丁二醇生产技术及国内外市场分析[J]. 精细石油化工进展, 2012, 13(10): 32-38. doi: 10.3969/j.issn.1009-8348.2012.10.009
|
[2] |
柳赛锋, 彭文才, 代斌. 不同介孔载体负载Cu催化合成1, 4-丁炔二醇[J]. 石河子大学学报(自然科学版), 2018, 36(3): 358-362.
|
[3] |
王凤阳. 雷尼镍催化1, 4-丁炔二醇选择加氢与工艺优化 [D]. 大连: 大连理工大学, 2021.
|
[4] |
张萍. 浅谈1, 4-丁二醇生产工艺及其技术进展[J]. 化工管理, 2016(26): 238-238. doi: 10.3969/j.issn.1008-4800.2016.26.202
|
[5] |
张静, 左童久, 陆江银. 分子筛镍基催化剂对1, 4-丁炔二醇加氢制1, 4-丁烯二醇催化性能研究[J]. 石油炼制与化工, 2021, 52(9): 25-30.
|
[6] |
WEISSERMEL K, ARPE H J. Industrielle Organische Chemie: Bedeutende Vor-und Zwischenprodukte [M]. VCH-Verlag-Ges, 1998.
|
[7] |
余博, 田哲, 池勇志, 等. 土霉素对剩余污泥中温厌氧消化的短期和长期影响[J]. 环境工程学报, 2016, 10(4): 2009-2015.
|
[8] |
徐威. 环境微生物学 [M]. 北京: 中国建材工业出版社, 2017: 112-115.
|
[9] |
夏涛, 陈立伟, 蔡天明, 等. 硫酸盐还原菌促进厌氧消化中丙酸转化的研究[J]. 环境科学与技术, 2009, 32(5): 40-43. doi: 10.3969/j.issn.1003-6504.2009.05.010
|
[10] |
O'FLAHERTY V, COLOHAN S, MULKERRINS D, et al. Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor. II: microbial interactions and toxic effects[J]. Bioresource Technology, 1999, 68(2): 109-120. doi: 10.1016/S0960-8524(98)00146-1
|
[11] |
GOTVAJN A G, ZAGORC-KONCAN J. Comparison of biodegradability assessment tests for chemical substances in water[J]. Water Science & Technology, 1996, 33(6): 207-212.
|
[12] |
TISLER T Z-K J. Aquatic toxicity of selected chemicals as a basic criterion for environmental classification[J]. Archives of Industrial Hygiene and Toxicology, 2003, 54(3): 207-213.
|
[13] |
陈庆磊, 张书良. 1, 4-丁二醇生产废水处理工艺的研究[J]. 河南化工, 2015, 32(4): 26-27.
|
[14] |
KONG Z, LI L, LI Y Y. Long-term performance of UASB in treating N, N-dimethylformamide-containing wastewater with a rapid start-up by inoculating mixed sludge[J]. Science of the Total Environment, 2019, 648: 1141-1150. doi: 10.1016/j.scitotenv.2018.08.161
|
[15] |
国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
|
[16] |
WANG Z, CHEN Z, KOWALCHUK G A, et al. Succession of the resident soil microbial community in response to periodic inoculations[J]. Applied and Environmental Microbiology, 2021, 87(9): e00046.
|
[17] |
KONG Z, LI L, KURIHARA R, et al. Anaerobic treatment of N, N-dimethylformamide-containing wastewater by co-culturing two sources of inoculum[J]. Water Research, 2018, 139: 228-239. doi: 10.1016/j.watres.2018.03.078
|
[18] |
成建国. 高效硫酸盐还原菌群的筛选、固定化及其在玉米浆脱硫中的应用 [D]. 武汉: 华中农业大学, 2023.
|
[19] |
张亚丽. SRB去除凉果废水中高浓度有机物与硫酸盐的作用机制 [D]. 广州: 广州大学, 2023.
|
[20] |
HAO T W, XIANG P Y, MACKEY H R, et al. A review of biological sulfate conversions in wastewater treatment[J]. Water Research, 2014, 65: 1-21. doi: 10.1016/j.watres.2014.06.043
|
[21] |
WU J, NIU Q, LI L, et al. A gradual change between methanogenesis and sulfidogenesis during a long-term UASB treatment of sulfate-rich chemical wastewater[J]. Science of the Total Environment, 2018, 636: 168-176. doi: 10.1016/j.scitotenv.2018.04.172
|
[22] |
刘少友, 唐文华, 邹勇, 等. 镍-磷-碳-氧化学镀层的制备、表征及1, 4-丁炔二醇在体系中的作用[J]. 材料保护, 2006, 39(9): 10-14. doi: 10.3969/j.issn.1001-1560.2006.09.004
|
[23] |
HU Y, JING Z, SUDO Y, et al. Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater[J]. Chemosphere, 2015, 130: 24-33. doi: 10.1016/j.chemosphere.2015.02.019
|
[24] |
LOPEZ-CORTES A, FARDEAU M L, FAUQUE G, et al. Reclassification of the sulfate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp. oxamicus as Desulfovibrio oxamicus sp. nov. , comb. nov[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(7): 1495-1499.
|
[25] |
JOHNSON L A, HUG L A. Cloacimonadota metabolisms include adaptations in engineered environments that are reflected in the evolutionary history of the phylum[J]. Environmental Microbiology Reports, 2022, 14(4): 520-529. doi: 10.1111/1758-2229.13061
|
[26] |
HARMSEN H J, VAN KUIJK B L, PLUGGE C M, et al. Syntrophobacter fumaroxidans sp. nov. , a syntrophic propionate-degrading sulfate-reducing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 1998, 48(4): 1383-1387.
|
[27] |
WALLRABENSTEIN C, HAUSCHILD E, SCHINK B. Syntrophobacter pfennigii sp. nov. , new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate[J]. Archives of Microbiology, 1995, 164: 346-352.
|
[28] |
YU R Q, BARKAY T. Microbial mercury transformations: Molecules, functions and organisms[J]. Advances in Applied Microbiology, 2022, 118: 31-90.
|
[29] |
CHEN S, LIU X, DONG X. Syntrophobacter sulfatireducens sp. nov. , a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(3): 1319-1324.
|
[30] |
周爱娟, 强海峰, 谭慧杰, 等. 一种不完全氧化型硫酸盐还原菌定向筛选和富集的方法: ZL202310440504.4[P]. 2023-04-23.
|
[31] |
KUEVER J, RAINEY F A, WIDDEL F. Desulforhabdus [M]. Bergey's Manual of Systematics of Archaea and Bacteria. 2015: 1-3.
|
[32] |
WU J, LIU Q, FENG B, et al. Temperature effects on the methanogenesis enhancement and sulfidogenesis suppression in the UASB treatment of sulfate-rich methanol wastewater[J]. International Biodeterioration & Biodegradation, 2019, 142: 182-190.
|
[33] |
MOTTERAN F, NADAI B M, BRAGA J K, et al. Metabolic routes involved in the removal of linear alkylbenzene sulfonate (LAS) employing linear alcohol ethoxylated and ethanol as co-substrates in enlarged scale fluidized bed reactor[J]. Science of the Total Environment, 2018, 640-641: 1411-1423. doi: 10.1016/j.scitotenv.2018.05.375
|
[34] |
HAMDI O, BEN HANIA W, POSTEC A, et al. Isolation and characterization of Desulfocurvus thunnarius sp. nov. , a sulfate-reducing bacterium isolated from an anaerobic sequencing batch reactor treating cooking wastewater[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(11): 4237-4242.
|
[35] |
KLOUCHE N, BASSO O, LASCOURREGES J-F, et al. Desulfocurvus vexinensis gen. nov. , sp. nov. , a sulfate-reducing bacterium isolated from a deep subsurface aquifer[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(12): 3100-3104.
|
[36] |
COLIN Y, GOÑI-URRIZA M, CAUMETTE P, et al. Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments[J]. FEMS Microbiology Ecology, 2013, 83(1): 26-37. doi: 10.1111/j.1574-6941.2012.01452.x
|
[37] |
REIS M, ALMEIDA J, LEMOS P, et al. Effect of hydrogen sulfide on growth of sulfate reducing bacteria[J]. Biotechnology and Bioengineering, 1992, 40(5): 593-600. doi: 10.1002/bit.260400506
|
[38] |
李健, 王文菊, 东志强, 等. 高机硫和硫酸盐含量高COD制药废水处理工程[J]. 水处理技术, 2018, 44(11): 133-135.
|