[1] |
TUNG T M, YASEEN Z M. A survey on river water quality modelling using artificial intelligence models: 2000–2020[J]. Journal of Hydrology, 2020, 585: 124670. doi: 10.1016/j.jhydrol.2020.124670
|
[2] |
JIANG Y, TIAN S, LI H, et al. Harnessing microbial electrosynthesis for a sustainable future[J]. The Innovation Materials, 2023, 1(1): 100008. doi: 10.59717/j.xinn-mater.2023.100008
|
[3] |
CAO Y, BAO Q, MIAO Y, et al. Biomimetic attempts in electrochemiluminescence[J]. The Innovation Materials, 2023, 1(3): 100034. doi: 10.59717/j.xinn-mater.2023.100034
|
[4] |
CHEN G, WANG Q, CHU X. Accelerated spread of Fukushima's waste water by ocean circulation[J]. The Innovation, 2021, 2(2): 100119. doi: 10.1016/j.xinn.2021.100119
|
[5] |
BASU N B, VAN METER K J, BYRNES D K, et al. Managing nitrogen legacies to accelerate water quality improvement[J]. Nature Geoscience, 2022, 15(2): 97-105. doi: 10.1038/s41561-021-00889-9
|
[6] |
YU J, ZHAO L, LIANG X Z, et al. The mediatory role of water quality on the association between extreme precipitation events and infectious diarrhea in the Yangtze River Basin, China[J]. Fundamental Research, 2023, 4.3: 495-504.
|
[7] |
ZAMORA-LEDEZMA C, NEGRETE-BOLAGAY D, FIGUEROA F, et al. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods[J]. Environmental Technology & Innovation, 2021, 22: 101504.
|
[8] |
董素涵, 刘萌硕, 蔡闻琪, 等. 磺胺甲噁唑淡水水生生物水质基准与生态风险评估[J]. 环境科学学报, 2023, 43(5): 496-504.
|
[9] |
张秋英, 李兆, 王健祺, 等. 南水北调东线湖泊硫酸盐污染现状与成因分析—以东平湖为例[J]. 环境科学学报, 2023, 43(7): 48-55.
|
[10] |
AMOATEY P, BAAWAIN M S. Effects of pollution on freshwater aquatic organisms[J]. Water Environment Research, 2019, 91(10): 1272-1287. doi: 10.1002/wer.1221
|
[11] |
YAN Z, ZHENG X, FAN J, et al. China national water quality criteria for the protection of freshwater life: Ammonia[J]. Chemosphere, 2020, 251: 126379. doi: 10.1016/j.chemosphere.2020.126379
|
[12] |
JEPPESEN E, BEKLIOĞLU M, ÖZKAN K, et al. Salinization increase due to climate change will have substantial negative effects on inland waters: A call for multifaceted research at the local and global scale[J]. The Innovation, 2020, 1(2): 100030. doi: 10.1016/j.xinn.2020.100030
|
[13] |
YUAN W, LIU Q, SONG S, et al. A climate-water quality assessment framework for quantifying the contributions of climate change and human activities to water quality variations[J]. Journal of Environmental Management, 2023, 333: 117441. doi: 10.1016/j.jenvman.2023.117441
|
[14] |
RYBERG K R, CHANAT J G. Climate extremes as drivers of surface-water-quality trends in the United States[J]. Science of the Total Environment, 2022, 809: 152165. doi: 10.1016/j.scitotenv.2021.152165
|
[15] |
GREENHALGH S, SAMARASINGHE O. Sustainably managing freshwater resources[J]. Ecology and Society, 2018, 23(2): 44. doi: 10.5751/ES-10233-230244
|
[16] |
JAM K, NOROOZI A, MOSAVI S H. A holistic view of sustainability in water resources management in the European Union: challenges and threats[J]. Environment, Development and Sustainability, 2023, 26(8): 1-34.
|
[17] |
Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a framework for Community Action in the Field of Water Policy[J]. Council Decision of, 2000, 327: 1-23.
|
[18] |
BERTHET A, VINCENT A, FLEURY P. Water quality issues and agriculture: An international review of innovative policy schemes[J]. Land Use Policy, 2021, 109: 105654. doi: 10.1016/j.landusepol.2021.105654
|
[19] |
BEHMEL S, DAMOUR M, LUDWIG R, et al. Water quality monitoring strategies—A review and future perspectives[J]. Science of the Total Environment, 2016, 571: 1312-1329. doi: 10.1016/j.scitotenv.2016.06.235
|
[20] |
MEYER A M, KLEIN C, FüNFROCKEN E, et al. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers[J]. Science of the Total Environment, 2019, 651: 2323-2333. doi: 10.1016/j.scitotenv.2018.10.069
|
[21] |
ALTENBURGER R, AIT-AISSA S, ANTCZAK P, et al. Future water quality monitoring—Adapting tools to deal with mixtures of pollutants in water resource management[J]. Science of the Total Environment, 2015, 512: 540-551.
|
[22] |
CZYCZULA RUDJORD Z, REID M J, SCHWERMER C U, et al. Laboratory development of an AI system for the real-time monitoring of water quality and detection of anomalies arising from chemical contamination[J]. Water, 2022, 14(16): 2588. doi: 10.3390/w14162588
|
[23] |
AHMED A N, OTHMAN F B, AFAN H A, et al. Machine learning methods for better water quality prediction[J]. Journal of Hydrology, 2019, 578: 124084. doi: 10.1016/j.jhydrol.2019.124084
|
[24] |
PARK J, KIM K T, LEE W H. Recent advances in information and communications technology (ICT) and sensor technology for monitoring water quality[J]. Water, 2020, 12(2): 510. doi: 10.3390/w12020510
|
[25] |
KRUSE P. Review on water quality sensors[J]. Journal of Physics D: Applied Physics, 2018, 51(20): 203002. doi: 10.1088/1361-6463/aabb93
|
[26] |
ABUZIR S Y, ABUZIR Y S. Machine learning for water quality classification[J]. Water Quality Research Journal, 2022, 57(3): 152-164. doi: 10.2166/wqrj.2022.004
|
[27] |
NASIR N, KANSAL A, ALSHALTONE O, et al. Water quality classification using machine learning algorithms[J]. Journal of Water Process Engineering, 2022, 48: 102920. doi: 10.1016/j.jwpe.2022.102920
|
[28] |
XIN L, MOU T. Research on the Application of Multimodal-Based Machine Learning Algorithms to Water Quality Classification[J]. Wireless Communications and Mobile Computing, 2022, 2022: 9555790.
|
[29] |
VENKATA VARA PRASAD D, SENTHIL KUMAR P, VENKATARAMANA L Y, et al. Automating water quality analysis using ML and auto ML techniques[J]. Environmental Research, 2021, 202: 111720. doi: 10.1016/j.envres.2021.111720
|
[30] |
RUSSO S, BESMER M D, BLUMENSAAT F, et al. The value of human data annotation for machine learning based anomaly detection in environmental systems[J]. Water Research, 2021, 206: 117695. doi: 10.1016/j.watres.2021.117695
|
[31] |
DOGO E M, NWULU N I, TWALA B, et al. A survey of machine learning methods applied to anomaly detection on drinking-water quality data[J]. Urban Water Journal, 2019, 16(3): 235-248. doi: 10.1080/1573062X.2019.1637002
|
[32] |
SOUZA A P, OLIVEIRA B A, ANDRADE M L, et al. Integrating remote sensing and machine learning to detect turbidity anomalies in hydroelectric reservoirs[J]. Science of the Total Environment, 2023, 902: 165964. doi: 10.1016/j.scitotenv.2023.165964
|
[33] |
NASSIF A B, TALIB M A, NASIR Q, et al. Machine learning for anomaly detection: a systematic review[J]. Ieee Access, 2021, 9: 78658-78700. doi: 10.1109/ACCESS.2021.3083060
|
[34] |
KHULLAR S, SINGH N. Machine learning techniques in river water quality modelling: a research travelogue[J]. Water Supply, 2021, 21(1): 1-13. doi: 10.2166/ws.2020.277
|
[35] |
WAGLE N, ACHARYA T D, LEE D H. Comprehensive review on application of machine learning algorithms for water quality parameter estimation using remote sensing data[J]. Sensors & Materials, 2020, 32(11 Pt. 4): 3879-3892.
|
[36] |
GUPTA D, MISHRA V K. Development of entropy-river water quality index for predicting water quality classification through machine learning approach[J]. Stochastic Environmental Research and Risk Assessment, 2023, 37(11): 4249-4271.
|
[37] |
AHMED U, MUMTAZ R, ANWAR H, et al. Efficient water quality prediction using supervised machine learning[J]. Water, 2019, 11(11): 2210. doi: 10.3390/w11112210
|
[38] |
ANTANASIJEVIĆ D, POCAJT V, POVRENOVIĆ D, et al. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study[J]. Environmental Science and Pollution Research, 2013, 20: 9006-9013. doi: 10.1007/s11356-013-1876-6
|
[39] |
BUI D T, KHOSRAVI K, TIEFENBACHER J, et al. Improving prediction of water quality indices using novel hybrid machine-learning algorithms[J]. Science of the Total Environment, 2020, 721: 137612. doi: 10.1016/j.scitotenv.2020.137612
|
[40] |
NONG X, SHAO D, ZHONG H, et al. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method[J]. Water Research, 2020, 178: 115781. doi: 10.1016/j.watres.2020.115781
|
[41] |
HAMAIDI-CHERGUI F, BRAHIM ERRAHMANI M. Water quality and physicochemical parameters of outgoing waters in a pharmaceutical plant[J]. Applied Water Science, 2019, 9(7): 165. doi: 10.1007/s13201-019-1046-1
|
[42] |
QURESHI S S, CHANNA A, MEMON S A, et al. Assessment of physicochemical characteristics in groundwater quality parameters[J]. Environmental Technology & Innovation, 2021, 24: 101877.
|
[43] |
KHULLAR S, SINGH N. Water quality assessment of a river using deep learning Bi-LSTM methodology: forecasting and validation[J]. Environmental Science and Pollution Research, 2022, 29(9): 12875-12889. doi: 10.1007/s11356-021-13875-w
|
[44] |
SYEED M M, HOSSAIN M S, KARIM M R, et al. Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review[J]. Environmental and Sustainability Indicators, 2023, 100247.
|
[45] |
SUTADIAN A D, MUTTIL N, YILMAZ A G, et al. Development of river water quality indices—a review[J]. Environmental Monitoring and Assessment, 2016, 188: 1-29. doi: 10.1007/s10661-015-4999-z
|
[46] |
GORDE S, JADHAV M. Assessment of water quality parameters: a review[J]. Journal of International Environmental Application and Science, 2013, 3(6): 2029-2035.
|
[47] |
ZHONG S, ZHANG K, BAGHERI M, et al. Machine learning: new ideas and tools in environmental science and engineering[J]. Environmental Science & Technology, 2021, 55(19): 12741-12754.
|
[48] |
ZHU J J, YANG M, REN Z J. Machine learning in environmental research: Common pitfalls and best practices[J]. Environmental Science & Technology, 2023, 57(46): 17671-17689.
|
[49] |
RAZAVI S, HANNAH D M, ELSHORBAGY A, et al. Coevolution of machine learning and process-based modelling to revolutionize Earth and environmental sciences: A perspective[J]. Hydrological Processes, 2022, 36(6): e14596. doi: 10.1002/hyp.14596
|
[50] |
ZHU M, WANG J, YANG X, et al. A review of the application of machine learning in water quality evaluation[J]. Eco-Environment & Health, 2022, 2: 107-116.
|
[51] |
ZHANG Y, WRIGHT M A, SAAR K L, et al. Machine learning-aided protein identification from multidimensional signatures[J]. Lab on a Chip, 2021, 21(15): 2922-2931. doi: 10.1039/D0LC01148G
|
[52] |
ZHAO Y, DENG G, ZHANG L, et al. Based investigate of beehive sound to detect air pollutants by machine learning[J]. Ecological informatics, 2021, 61: 101246. doi: 10.1016/j.ecoinf.2021.101246
|
[53] |
LIN S, FANG X, FANG G, et al. Ultrasensitive detection and distinction of pollutants based on SERS assisted by machine learning algorithms[J]. Sensors and Actuators B: Chemical, 2023, 384: 133651. doi: 10.1016/j.snb.2023.133651
|
[54] |
CHOWDHURY M A F, ABDULLAH M, AZAD M A K, et al. Environmental, social and governance (ESG) rating prediction using machine learning approaches[J]. Annals of Operations Research, 2023, https://doi.org/10.1007/s10479-023-05633-7.
|
[55] |
RANI V, NABI S T, KUMAR M, et al. Self-supervised learning: A succinct review[J]. Archives of Computational Methods in Engineering, 2023, 30: 2761-2775. doi: 10.1007/s11831-023-09884-2
|
[56] |
LIU X, ZHANG F, HOU Z, et al. Self-Supervised learning: Generative or contrastive[J]. Ieee Transactions on Knowledge and Data Engineering, 2023, 35(1): 857-876.
|
[57] |
MOZELLI A, TAHERINEJAD N, JANTSCH A. A study on confidence: An unsupervised multiagent machine learning experiment[J]. Ieee Design & Test, 2022, 39(3): 54-62.
|
[58] |
HE Z, QUAN C, WANG S, et al. A comparative study of unsupervised deep learning methods for MRI reconstruction[J]. Investigative Magnetic Resonance Imaging, 2020, 24(4): 179-195. doi: 10.13104/imri.2020.24.4.179
|
[59] |
HO L, GOETHALS P. Machine learning applications in river research: Trends, opportunities and challenges[J]. Methods in Ecology and Evolution, 2022, 13(11): 2603-2621. doi: 10.1111/2041-210X.13992
|
[60] |
CIABURRO G. Machine fault detection methods based on machine learning algorithms: A review[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 11453-11490. doi: 10.3934/mbe.2022534
|
[61] |
ELBASI E, ZAKI C, TOPCU A E, et al. Crop prediction model using machine learning algorithms[J]. Applied Sciences, 2023, 13(16): 9288. doi: 10.3390/app13169288
|
[62] |
ARIEF V N, DELACY I H, BASFORD K E, et al. Application of a dendrogram seriation algorithm to extract pattern from plant breeding data[J]. Euphytica, 2017, 213(4): 85. doi: 10.1007/s10681-017-1870-z
|
[63] |
SONG Y-Y, YING L. Decision tree methods: applications for classification and prediction[J]. Shanghai archives of psychiatry, 2015, 27(2): 130.
|
[64] |
QUINLAN J R. C4. 5: Programs for machine learning[M]. Morgan Kaufmann, 1993.
|
[65] |
MYLES A J, FEUDALE R N, LIU Y, et al. An introduction to decision tree modeling[J]. Journal of Chemometrics: A Journal of the Chemometrics Society, 2004, 18(6): 275-285.
|
[66] |
RIGATTI S J. Random forest[J]. Journal of Insurance Medicine, 2017, 47(1): 31-39. doi: 10.17849/insm-47-01-31-39.1
|
[67] |
PARK Y, CHO K H, PARK J, et al. Development of early-warning protocol for predicting chlorophyll-a concentration using machine learning models in freshwater and estuarine reservoirs, Korea[J]. Science of the Total Environment, 2015, 502: 31-41. doi: 10.1016/j.scitotenv.2014.09.005
|
[68] |
HAGHIABI A H, NASROLAHI A H, PARSAIE A. Water quality prediction using machine learning methods[J]. Water Quality Research Journal, 2018, 53(1): 3-13. doi: 10.2166/wqrj.2018.025
|
[69] |
NOBLE W S. What is a support vector machine?[J]. Nature Biotechnology, 2006, 24(12): 1565-1567. doi: 10.1038/nbt1206-1565
|
[70] |
LIU M, LU J. Support vector machine-an alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river?[J]. Environmental Science and Pollution Research, 2014, 21: 11036-11053. doi: 10.1007/s11356-014-3046-x
|
[71] |
KUJAWA S, NIEDBAŁA G. Artificial neural networks in agriculture[J]. Agriculture, 2021, 11(6): 497. doi: 10.3390/agriculture11060497
|
[72] |
ZADOR A M. A critique of pure learning and what artificial neural networks can learn from animal brains[J]. Nature Communications, 2019, 10(1): 3770. doi: 10.1038/s41467-019-11786-6
|
[73] |
HASSON U, NASTASE S A, GOLDSTEIN A. Direct fit to nature: an evolutionary perspective on biological and artificial neural networks[J]. Neuron, 2020, 105(3): 416-434. doi: 10.1016/j.neuron.2019.12.002
|
[74] |
ZOU J, HAN Y, SO S-S. Overview of artificial neural networks[J]. Artificial neural networks: methods and applications, 2009, 14-22.
|
[75] |
GREFF K, SRIVASTAVA R K, KOUTNíK J, et al. LSTM: A search space odyssey[J]. IEEE transactions on neural networks and learning systems, 2016, 28(10): 2222-2232.
|
[76] |
TYAGI S, SHARMA B, SINGH P, et al. Water quality assessment in terms of water quality index[J]. American Journal of water resources, 2013, 1(3): 34-38.
|
[77] |
JI L, LI Y, ZHANG G, et al. Anthropogenic disturbances have contributed to degradation of river water quality in arid areas[J]. Water, 2021, 13(22): 3305. doi: 10.3390/w13223305
|
[78] |
WANG X, ZHANG F, DING J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China[J]. Scientific reports, 2017, 7(1): 12858. doi: 10.1038/s41598-017-12853-y
|
[79] |
CHOU J S, HO C C, HOANG H S. Determining quality of water in reservoir using machine learning[J]. Ecological informatics, 2018, 44: 57-75. doi: 10.1016/j.ecoinf.2018.01.005
|
[80] |
CHIDIAC S, EL NAJJAR P, OUAINI N, et al. A comprehensive review of water quality indices (WQIs): history, models, attempts and perspectives[J]. Reviews in Environmental Science and Bio/Technology, 2023, 22(2): 349-395. doi: 10.1007/s11157-023-09650-7
|
[81] |
NAJAFZADEH M, HOMAEI F, FARHADI H. Reliability assessment of water quality index based on guidelines of national sanitation foundation in natural streams: Integration of remote sensing and data-driven models[J]. Artificial Intelligence Review, 2021, 54(6): 4619-4651. doi: 10.1007/s10462-021-10007-1
|
[82] |
SHAH M I, ABUNAMA T, JAVED M F, et al. Modeling surface water quality using the adaptive neuro-fuzzy inference system aided by input optimization[J]. Sustainability, 2021, 13(8): 4576. doi: 10.3390/su13084576
|
[83] |
HASSAN M M, HASSAN M M, AKTER L, et al. Efficient prediction of water quality index (WQI) using machine learning algorithms[J]. Human-Centric Intelligent Systems, 2021, 1(3-4): 86-97. doi: 10.2991/hcis.k.211203.001
|
[84] |
SILLBERG C V, KULLAVANIJAYA P, CHAVALPARIT O. Water quality classification by integration of attribute-realization and support vector machine for the Chao Phraya River[J]. Journal of Ecological Engineering, 2021, 22(9): 70-86. doi: 10.12911/22998993/141364
|
[85] |
HMOUD AL-ADHAILEH M, WASELALLAH ALSAADE F. Modelling and prediction of water quality by using artificial intelligence[J]. Sustainability, 2021, 13(8): 4259. doi: 10.3390/su13084259
|
[86] |
SHAMSUDDIN I I S, OTHMAN Z, SANI N S. Water quality index classification based on machine learning: A case from the Langat River Basin model[J]. Water, 2022, 14(19): 2939. doi: 10.3390/w14192939
|
[87] |
ZHANG M, HUANG Y, XIE D, et al. Machine learning constructs color features to accelerate development of long-term continuous water quality monitoring[J]. Journal of Hazardous Materials, 2024, 461: 132612. doi: 10.1016/j.jhazmat.2023.132612
|
[88] |
CHEN P, WANG B, WU Y, et al. Urban river water quality monitoring based on self-optimizing machine learning method using multi-source remote sensing data[J]. Ecological Indicators, 2023, 146: 109750. doi: 10.1016/j.ecolind.2022.109750
|
[89] |
LI Y, WANG X, ZHAO Z, et al. Lagoon water quality monitoring based on digital image analysis and machine learning estimators[J]. Water Research, 2020, 172: 115471. doi: 10.1016/j.watres.2020.115471
|
[90] |
KRISHNAN S R, NALLAKARUPPAN M, CHENGODEN R, et al. Smart water resource management using Artificial Intelligence—A review[J]. Sustainability, 2022, 14(20): 13384. doi: 10.3390/su142013384
|
[91] |
NOURAKI A, ALAVI M, GOLABI M, et al. Prediction of water quality parameters using machine learning models: a case study of the Karun River, Iran[J]. Environmental Science and Pollution Research, 2021, 28(40): 57060-57072. doi: 10.1007/s11356-021-14560-8
|
[92] |
ZHAO Y, YU T, HU B, et al. Retrieval of water quality parameters based on near-surface remote sensing and machine learning algorithm[J]. Remote Sensing, 2022, 14(21): 5305. doi: 10.3390/rs14215305
|
[93] |
SAMANTARAY S, DAS S S, SAHOO A, et al. Monthly runoff prediction at Baitarani river basin by support vector machine based on Salp swarm algorithm[J]. Ain Shams Engineering Journal, 2022, 13(5): 101732. doi: 10.1016/j.asej.2022.101732
|
[94] |
BAEK S-S, PYO J, CHUN J A. Prediction of water level and water quality using a CNN-LSTM combined deep learning approach[J]. Water, 2020, 12(12): 3399. doi: 10.3390/w12123399
|
[95] |
ASADOLLAH S B H S, SHARAFATI A, MOTTA D, et al. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104599. doi: 10.1016/j.jece.2020.104599
|
[96] |
LU H, MA X. Hybrid decision tree-based machine learning models for short-term water quality prediction[J]. Chemosphere[J], 2020, 249: 126169. doi: 10.1016/j.chemosphere.2020.126169
|
[97] |
LIU P, WANG J, SANGAIAH A K, et al. Analysis and prediction of water quality using LSTM deep neural networks in IoT environment[J]. Sustainability, 2019, 11(7): 2058. doi: 10.3390/su11072058
|
[98] |
EL BILALI A, TALEB A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment[J]. Journal of the Saudi Society of Agricultural Sciences, 2020, 19(7): 439-451. doi: 10.1016/j.jssas.2020.08.001
|
[99] |
ZHI W, FENG D, TSAI W-P, et al. From hydrometeorology to river water quality: can a deep learning model predict dissolved oxygen at the continental scale?[J]. Environmental Science & Technology, 2021, 55(4): 2357-2368.
|
[100] |
ZHOU Y. Real-time probabilistic forecasting of river water quality under data missing situation: Deep learning plus post-processing techniques[J]. Journal of Hydrology, 2020, 589: 125164. doi: 10.1016/j.jhydrol.2020.125164
|
[101] |
ZHENG Z, DING H, WENG Z, et al. Research on a multiparameter water quality prediction method based on a hybrid model[J]. Ecological informatics, 2023, 76: 102125. doi: 10.1016/j.ecoinf.2023.102125
|
[102] |
HAQ K P R A, HARIGOVINDAN V P. Water quality prediction for smart aquaculture using hybrid deep learning models[J]. Ieee Access, 2022, 10: 60078-60098. doi: 10.1109/ACCESS.2022.3180482
|
[103] |
ZHANG Y, LI C, JIANG Y, et al. A hybrid model combining mode decomposition and deep learning algorithms for detecting TP in urban sewer networks[J]. Applied Energy, 2023, 333: 120600. doi: 10.1016/j.apenergy.2022.120600
|
[104] |
YANG H, LIU S. A prediction model of aquaculture water quality based on multiscale decomposition[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 7561-7579. doi: 10.3934/mbe.2021374
|
[105] |
JIANGE J, LIQIN Z, SENJUN H, et al. Water quality prediction based on IGRA-ISSA-LSTM model[J]. Water, Air, & Soil Pollution, 2023, 234(3): 172.
|
[106] |
SONG C, YAO L. A hybrid model for water quality parameter prediction based on CEEMDAN-IALO-LSTM ensemble learning[J]. Environmental Earth Sciences, 2022, 81(9): 262. doi: 10.1007/s12665-022-10380-2
|
[107] |
YANG Z, ZOU L, XIA J, et al. Inner dynamic detection and prediction of water quality based on CEEMDAN and GA-SVM models[J]. Remote Sensing, 2022, 14(7): 1714. doi: 10.3390/rs14071714
|
[108] |
DONG L, ZHANG J. Predicting polycyclic aromatic hydrocarbons in surface water by a multiscale feature extraction-based deep learning approach[J]. Science of the Total Environment, 2021, 799: 149509. doi: 10.1016/j.scitotenv.2021.149509
|
[109] |
LIU J, WANG P, JIANG D, et al. An integrated data-driven framework for surface water quality anomaly detection and early warning[J]. Journal of Cleaner Production, 2020, 251: 119145. doi: 10.1016/j.jclepro.2019.119145
|
[110] |
MUHAREMI F, LOGOFĂTU D, LEON F. Machine learning approaches for anomaly detection of water quality on a real-world data set[J]. Journal of Information and Telecommunication, 2019, 3(3): 294-307. doi: 10.1080/24751839.2019.1565653
|
[111] |
MIAU S, HUNG W-H. River flooding forecasting and anomaly detection based on deep learning[J]. Ieee Access, 2020, 8: 198384-198402. doi: 10.1109/ACCESS.2020.3034875
|
[112] |
PRASAD D V V, VENKATARAMANA L Y, KUMAR P S, et al. Analysis and prediction of water quality using deep learning and auto deep learning techniques[J]. Science of the Total Environment, 2022, 821: 153311. doi: 10.1016/j.scitotenv.2022.153311
|
[113] |
ZHU G, LIN J, FANG H, et al. A flocculation tensor to monitor water quality using a deep learning model[J]. Environmental Chemistry Letters, 2022, 20(6): 3405-3414. doi: 10.1007/s10311-022-01524-8
|
[114] |
WAI K P, CHIA M Y, KOO C H, et al. Applications of deep learning in water quality management: A state-of-the-art review[J]. Journal of Hydrology, 2022, 613: 128332. doi: 10.1016/j.jhydrol.2022.128332
|
[115] |
CHEN H, ZHANG C, YU H, et al. Application of machine learning to evaluating and remediating models for energy and environmental engineering[J]. Applied Energy, 2022, 320: 119286. doi: 10.1016/j.apenergy.2022.119286
|
[116] |
LAKHOUIT A, SHABAN M, ALATAWI A, et al. Machine-learning approaches in geo-environmental engineering: Exploring smart solid waste management[J]. Journal of Environmental Management, 2023, 330: 117174. doi: 10.1016/j.jenvman.2022.117174
|
[117] |
COJBASIC S, DMITRASINOVIC S, KOSTIC M, et al. Application of machine learning in river water quality management: a review[J]. Water Science & Technology, 2023, 88(9): 2297-2308.
|
[118] |
JAFARI I, LUO R, LIM F Y, et al. Machine-learning-assisted prediction and optimized kinetic modelling of residual chlorine decay for enhanced water quality management[J]. Chemosphere, 2023, 341: 140011. doi: 10.1016/j.chemosphere.2023.140011
|
[119] |
DING F, ZHANG W, CAO S, et al. Optimization of water quality index models using machine learning approaches[J]. Water Research, 2023, 243: 120337. doi: 10.1016/j.watres.2023.120337
|