[1] ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51-59. doi: 10.1038/nature15743
[2] PENNINO M J, COMPTON J E, LEIBOWITZ S G. Trends in drinking water nitrate violations across the United States[J]. Environmental Science & Technology, 2017, 51(22): 13450-13460.
[3] 石岩, 郑凯凯, 邹吕熙, 等. 城镇污水处理厂总氮超标逻辑分析方法及应用[J]. 环境工程学报, 2020, 14(5): 1412-1420. doi: 10.12030/j.cjee.201811049
[4] SCHWARZ H, DODSON R. Reduction potentials of CO2 and the alcohol radicals[J]. The Journal of Physical Chemistry, 1989, 93: 409-414. doi: 10.1021/j100338a079
[5] ALSALKA Y, AL-MADANAT O, CURTI M, et al. Photocatalytic H2 evolution from oxalic acid: Effect of cocatalysts and carbon dioxide radical anion on the surface charge transfer mechanisms[J]. ACS Applied Energy Materials, 2020, 3(7): 6678-6691. doi: 10.1021/acsaem.0c00826
[6] TANG P, JIANG W, LYU S, et al. Application of glutamate to enhance carbon tetrachloride (CT) degradation by Fe(II) activated calcium peroxide in the presence of methanol: CT removal performance and mechanism[J]. Separation and Purification Technology, 2020, 236: 116259. doi: 10.1016/j.seppur.2019.116259
[7] LIU X, ZHONG J, FANG L, et al. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical[J]. Chemical Engineering Journal, 2016, 303: 56-63. doi: 10.1016/j.cej.2016.05.130
[8] GU X, LU S, FU X, et al. Carbon dioxide radical anion-based UV/S2O82−/HCOOH reductive process for carbon tetrachloride degradation in aqueous solution[J]. Separation and Purification Technology, 2017, 172: 211-216. doi: 10.1016/j.seppur.2016.08.019
[9] 李炳智. 二氧化碳阴离子自由基还原降解水溶液中全氟辛烷磺酸盐研究[J]. 上海环境科学, 2019, 38(2): 47-52.
[10] 秦宝雨, 唐海, 严律, 等. 紫外活化过硫酸盐/甲酸体系还原水中Cr(Ⅵ)机理及影响因素[J]. 环境工程学报, 2019, 13(9): 105-113. doi: 10.12030/j.cjee.201812139
[11] TUGAOEN H O, GARCIASEGURA S, HRISTOVSKI K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology[J]. Science of the Total Environment, 2017, 599: 1524-1551.
[12] CHEN G, HANUKOVICH S, CHEBEIR M, et al. Nitrate removal via a formate radical-induced photochemical process[J]. Environmental Science & Technology, 2019, 53(1): 316-324.
[13] DONG N, ZENG Z, RUSSENBERGER M, et al. Investigating cake layer development and functional genes in formate- and acetate-driven heterotrophic denitrifying AnMBRs[J]. Chemical Engineering Journal, 2024, 485: 149623. doi: 10.1016/j.cej.2024.149623
[14] YISHAI O, LINDNER S N, GONZALEZ DE LA CRUZ J, et al. The formate bio-economy[J]. Current Opinion in Chemical Biology, 2016, 35: 1-9. doi: 10.1016/j.cbpa.2016.07.005
[15] MACK J, BOLTON J R. Photochemistry of nitrite and nitrate in aqueous solution: A review[J]. Journal of Photochemistry and Photobiology A, 1999, 128(1): 1-13.
[16] MARK G, KORTH H-G, SCHUCHMANN H-P, et al. The photochemistry of aqueous nitrate ion revisited[J]. Journal of Photochemistry and Photobiology A: Chemistry, 1996, 101(2): 89-103.
[17] GOLDSTEIN S, RABANI J. Mechanism of nitrite formation by nitrate photolysis in aqueous solutions: The role of peroxynitrite, nitrogen dioxide, and hydroxyl radical[J]. Journal of the American Chemical Society, 2007, 129(34): 10597-10601. doi: 10.1021/ja073609+
[18] BENEDICT K B, MCFALL A S, ANASTASIO C. Quantum yield of nitrite from the photolysis of aqueous nitrate above 300 nm[J]. Environmental Science & Technology, 2017, 51(8): 4387-4395.
[19] NESHVAD G, HOFFMAN M Z. Reductive quenching of the luminescent excited state of tris (2, 2'-bipyrazine) ruthenium (2+) ion in aqueous solution[J]. The Journal of Physical Chemistry, 1989, 93(6): 2445-2452. doi: 10.1021/j100343a044
[20] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·O in aqueous solution)[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805
[21] CHEN J, LIU J, ZHOU J, et al. Reductive removal of nitrate by carbon dioxide radical with high product selectivity to form N2 in a UV/H2O2/HCOOH system[J]. Journal of Water Process Engineering, 2020, 33: 101097. doi: 10.1016/j.jwpe.2019.101097