[1] |
VANDENBERG L N, HAUSER R, MARCUS M, et al. Human exposure to bisphenol A (BPA)[J]. Reproductive Toxicology, 2007, 24(2): 139-177. doi: 10.1016/j.reprotox.2007.07.010
|
[2] |
MA Y, LIU H H, WU J X, et al. The adverse health effects of bisphenol A and related toxicity mechanisms[J]. Environmental Research, 2019, 176: 108575. doi: 10.1016/j.envres.2019.108575
|
[3] |
GEENS T, AERTS D, BERTHOT C, et al. A review of dietary and non-dietary exposure to bisphenol-A[J]. Food and Chemical Toxicology, 2012, 50(10): 3725-3740. doi: 10.1016/j.fct.2012.07.059
|
[4] |
PINNEY S E, MESAROS C A, SNYDER N W, et al. Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants[J]. Reproductive Toxicology, 2017, 67: 1-9. doi: 10.1016/j.reprotox.2016.11.007
|
[5] |
MARTÍN J, SANTOS J L, APARICIO I, et al. Analytical method for biomonitoring of endocrine-disrupting compounds (bisphenol A, parabens, perfluoroalkyl compounds and a brominated flame retardant) in human hair by liquid chromatography-tandem mass spectrometry[J]. Analytica Chimica Acta, 2016, 945: 95-101. doi: 10.1016/j.aca.2016.10.004
|
[6] |
MENDONCA K, HAUSER R, CALAFAT A M, et al. Bisphenol A concentrations in maternal breast milk and infant urine[J]. International Archives of Occupational and Environmental Health, 2014, 87(1): 13-20. doi: 10.1007/s00420-012-0834-9
|
[7] |
FANG Z, GAO Y R, WU X L, et al. A critical review on remediation of bisphenol S (BPS) contaminated water: Efficacy and mechanisms[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(5): 476-522. doi: 10.1080/10643389.2019.1629802
|
[8] |
NIU L J, ZHANG S Q, WANG S Q, et al. Overlooked environmental risks deriving from aqueous transformation of bisphenol alternatives: Integration of chemical and toxicological insights[J]. Journal of Hazardous Materials, 2022, 427: 128208. doi: 10.1016/j.jhazmat.2021.128208
|
[9] |
MATSUSHIMA A, LIU X H, OKADA H, et al. Bisphenol AF is a full agonist for the estrogen receptor ERalpha but a highly specific antagonist for ERbeta[J]. Environmental Health Perspectives, 2010, 118(9): 1267-1272. doi: 10.1289/ehp.0901819
|
[10] |
JIN H B, ZHU L Y. Occurrence and partitioning of bisphenol analogues in water and sediment from Liaohe River Basin and Taihu Lake, China[J]. Water Research, 2016, 103: 343-351. doi: 10.1016/j.watres.2016.07.059
|
[11] |
ZHOU L J, ZHANG B B, ZHAO Y G, et al. Occurrence, spatiotemporal distribution, and ecological risks of steroids in a large shallow Chinese Lake, Lake Taihu[J]. Science of the Total Environment, 2016, 557/558: 68-79. doi: 10.1016/j.scitotenv.2016.03.059
|
[12] |
LIU Y H, ZHANG S H, SONG N H, et al. Occurrence, distribution and sources of bisphenol analogues in a shallow Chinese freshwater lake (Taihu Lake): Implications for ecological and human health risk[J]. Science of the Total Environment, 2017, 599/600: 1090-1098. doi: 10.1016/j.scitotenv.2017.05.069
|
[13] |
ROCHESTER J R, BOLDEN A L. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes[J]. Environmental Health Perspectives, 2015, 123(7): 643-650. doi: 10.1289/ehp.1408989
|
[14] |
ZDARTA J, ANTECKA K, FRANKOWSKI R, et al. The effect of operational parameters on the biodegradation of bisphenols by Trametes versicolor laccase immobilized on Hippospongia communis spongin scaffolds[J]. Science of the Total Environment, 2018, 615: 784-795. doi: 10.1016/j.scitotenv.2017.09.213
|
[15] |
CHOI Y J, LEE L S. Aerobic soil biodegradation of bisphenol (BPA) alternatives bisphenol S and bisphenol AF compared to BPA[J]. Environmental Science & Technology, 2017, 51(23): 13698-13704.
|
[16] |
DANZL E, SEI K, SODA S, et al. Biodegradation of bisphenol A, bisphenol F and bisphenol S in seawater[J]. International Journal of Environmental Research and Public Health, 2009, 6(4): 1472-1484. doi: 10.3390/ijerph6041472
|
[17] |
SAKAI K, YAMANAKA H, MORIYOSHI K, et al. Biodegradation of bisphenol A and related compounds by Sphingomonas sp. strain BP-7 isolated from seawater[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(1): 51-57. doi: 10.1271/bbb.60351
|
[18] |
蔡蕊, 王文姬, 许航, 等. 四溴双酚A在土壤中的降解转化及残留研究进展[J]. 环境化学, 2021, 40(1): 102-110. doi: 10.7524/j.issn.0254-6108.2020021001
CAI R, WANG W J, XU H, et al. Degradation, transformation, and residue formation of tetrabromobisphenol A (TBBPA) in soil: A review[J]. Environmental Chemistry, 2021, 40(1): 102-110 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020021001
|
[19] |
de MORAIS FARIAS J, KREPSKY N. Bacterial degradation of bisphenol analogues: An overview[J]. Environmental Science and Pollution Research International, 2022, 29(51): 76543-76564. doi: 10.1007/s11356-022-23035-3
|
[20] |
CHEN D, KANNAN K, TAN H L, et al. Bisphenol analogues other than BPA: Environmental occurrence, human exposure, and toxicity-a review[J]. Environmental Science & Technology, 2016, 50(11): 5438-5453.
|
[21] |
WU L H, ZHANG X M, WANG F, et al. Occurrence of bisphenol S in the environment and implications for human exposure: A short review[J]. Science of the Total Environment, 2018, 615: 87-98. doi: 10.1016/j.scitotenv.2017.09.194
|
[22] |
CHOI Y J, LEE L S. Partitioning behavior of bisphenol alternatives BPS and BPAF compared to BPA[J]. Environmental Science & Technology, 2017, 51(7): 3725-3732.
|
[23] |
LIAO C Y, KANNAN K. A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States[J]. Archives of Environmental Contamination and Toxicology, 2014, 67(1): 50-59. doi: 10.1007/s00244-014-0016-8
|
[24] |
KONNO Y, SUZUKI H, KUDO H, et al. Synthesis and properties of fluorine-containing poly(ether)s with pendant hydroxyl groups by the polyaddition of bis(oxetane)s and bisphenol AF[J]. Polymer Journal, 2004, 36(2): 114-122. doi: 10.1295/polymj.36.114
|
[25] |
张超. 青春期双酚AF暴露对初中生抑郁症状和小鼠神经行为的影响及机制研究[D]. 合肥: 安徽医科大学, 2022.
ZHANG C. Effects and mechanisms of adolescent bisphenol AF exposure on depressive symptoms in junior high school students and neurobehavior in mice[D]. Hefei: Anhui Medical University, 2022 (in Chinese).
|
[26] |
SONG S J, RUAN T, WANG T, et al. Distribution and preliminary exposure assessment of bisphenol AF (BPAF) in various environmental matrices around a manufacturing plant in China[J]. Environmental Science & Technology, 2012, 46(24): 13136-13143.
|
[27] |
XUE J C, KANNAN K. Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA[J]. Science of the Total Environment, 2019, 648: 442-449. doi: 10.1016/j.scitotenv.2018.08.047
|
[28] |
RUSSO G, BARBATO F, GRUMETTO L. Monitoring of bisphenol A and bisphenol S in thermal paper receipts from the Italian market and estimated transdermal human intake: A pilot study[J]. Science of the Total Environment, 2017, 599/600: 68-75. doi: 10.1016/j.scitotenv.2017.04.192
|
[29] |
LIAO C Y, LIU F, MOON H B, et al. Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: Spatial and temporal distributions[J]. Environmental Science & Technology, 2012, 46(21): 11558-11565.
|
[30] |
LIAO C Y, LIU F, GUO Y, et al. Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: Implications for human exposure[J]. Environmental Science & Technology, 2012, 46(16): 9138-9145.
|
[31] |
YU X H, XUE J C, YAO H, et al. Occurrence and estrogenic potency of eight bisphenol analogs in sewage sludge from the U. S. EPA targeted national sewage sludge survey[J]. Journal of Hazardous Materials, 2015, 299: 733-739. doi: 10.1016/j.jhazmat.2015.07.012
|
[32] |
SHIMABUKU I, CHEN D, WU Y, et al. Occurrence and risk assessment of organophosphate esters and bisphenols in San Francisco Bay, California, USA[J]. Science of the Total Environment, 2022, 813: 152287. doi: 10.1016/j.scitotenv.2021.152287
|
[33] |
CHIRIAC F L, PIRVU F, PAUN I. Investigation of endocrine disruptor pollutants and their metabolites along the Romanian Black Sea Coast: Occurrence, distribution and risk assessment[J]. Environmental Toxicology and Pharmacology, 2021, 86: 103673. doi: 10.1016/j.etap.2021.103673
|
[34] |
YAMAZAKI E, YAMASHITA N, TANIYASU S, et al. Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India[J]. Ecotoxicology and Environmental Safety, 2015, 122: 565-572. doi: 10.1016/j.ecoenv.2015.09.029
|
[35] |
ZHAO X, QIU W H, ZHENG Y, et al. Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens and their metabolites in the Pearl River Estuary, South China[J]. Ecotoxicology and Environmental Safety, 2019, 180: 43-52. doi: 10.1016/j.ecoenv.2019.04.083
|
[36] |
WAN Y J, XIA W, YANG S Y, et al. Spatial distribution of bisphenol S in surface water and human serum from Yangtze River watershed, China: Implications for exposure through drinking water[J]. Chemosphere, 2018, 199: 595-602. doi: 10.1016/j.chemosphere.2018.02.040
|
[37] |
YAN Z Y, LIU Y H, YAN K, et al. Bisphenol analogues in surface water and sediment from the shallow Chinese freshwater lakes: Occurrence, distribution, source apportionment, and ecological and human health risk[J]. Chemosphere, 2017, 184: 318-328. doi: 10.1016/j.chemosphere.2017.06.010
|
[38] |
WANG L, YING G G, ZHAO J L, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools[J]. Environmental Pollution, 2011, 159(1): 148-156. doi: 10.1016/j.envpol.2010.09.017
|
[39] |
SI W, CAI Y F, LIU J C, et al. Investigating the role of colloids on the distribution of bisphenol analogues in surface water from an ecological demonstration area, China[J]. Science of the Total Environment, 2019, 673: 699-707. doi: 10.1016/j.scitotenv.2019.04.142
|
[40] |
YANG X D, ZHOU Q H, WANG Q W, et al. Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model[J]. Environmental Pollution, 2023, 337: 122552. doi: 10.1016/j.envpol.2023.122552
|
[41] |
ŠAUER P, ŠVECOVÁ H, GRABICOVÁ K, et al. Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities[J]. The Science of the Total Environment, 2021, 751: 141801. doi: 10.1016/j.scitotenv.2020.141801
|
[42] |
WEI D L, YUAN K J, AI F X, et al. Occurrence, spatial distributions, and temporal trends of bisphenol analogues in an E-waste dismantling area: Implications for risk assessment[J]. Science of the Total Environment, 2023, 867: 161498. doi: 10.1016/j.scitotenv.2023.161498
|
[43] |
SUN Q, WANG Y W, LI Y, et al. Fate and mass balance of bisphenol analogues in wastewater treatment plants in Xiamen City, China[J]. Environmental Pollution, 2017, 225: 542-549. doi: 10.1016/j.envpol.2017.03.018
|
[44] |
QIAN Y G, JIA X F, DING T D, et al. Occurrence and removal of bisphenol analogues in wastewater treatment plants and activated sludge bioreactor[J]. Science of the Total Environment, 2021, 758: 143606. doi: 10.1016/j.scitotenv.2020.143606
|
[45] |
KARTHIKRAJ R, KANNAN K. Mass loading and removal of benzotriazoles, benzothiazoles, benzophenones, and bisphenols in Indian sewage treatment plants[J]. Chemosphere, 2017, 181: 216-223. doi: 10.1016/j.chemosphere.2017.04.075
|
[46] |
ČESEN M, LENARČIČ K, MISLEJ V, et al. The occurrence and source identification of bisphenol compounds in wastewaters[J]. Science of the Total Environment, 2018, 616/617: 744-752. doi: 10.1016/j.scitotenv.2017.10.252
|
[47] |
SONG S J, SONG M Y, ZENG L Z, et al. Occurrence and profiles of bisphenol analogues in municipal sewage sludge in China[J]. Environmental Pollution, 2014, 186: 14-19. doi: 10.1016/j.envpol.2013.11.023
|
[48] |
LEE S, LIAO C Y, SONG G J, et al. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea[J]. Chemosphere, 2015, 119: 1000-1006. doi: 10.1016/j.chemosphere.2014.09.011
|
[49] |
ALBOUY M, DECEUNINCK Y, MIGEOT V, et al. Characterization of pregnant women exposure to halogenated parabens and bisphenols through water consumption[J]. Journal of Hazardous Materials, 2023, 448: 130945. doi: 10.1016/j.jhazmat.2023.130945
|
[50] |
RUSSO G, LANERI S, Di LORENZO R, et al. Monitoring of pollutants content in bottled and tap drinking water in Italy[J]. Molecules, 2022, 27(13): 3990. doi: 10.3390/molecules27133990
|
[51] |
WANG W, ABUALNAJA K O, ASIMAKOPOULOS A G, et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries[J]. Environment International, 2015, 83: 183-191. doi: 10.1016/j.envint.2015.06.015
|
[52] |
XU Z Y, TIAN L, LIU L, et al. Food thermal labels are a source of dietary exposure to bisphenol S and other color developers[J]. Environmental Science & Technology, 2023, 57(12): 4984-4991.
|
[53] |
ZHOU N, LIU Y H, CAO S Q, et al. Biodegradation of bisphenol compounds in the surface water of Taihu Lake and the effect of humic acids[J]. Science of the Total Environment, 2020, 723: 138164. doi: 10.1016/j.scitotenv.2020.138164
|
[54] |
FANG Z, HU Y Y, WU X S, et al. A novel magnesium ascorbyl phosphate graphene-based monolith and its superior adsorption capability for bisphenol A[J]. Chemical Engineering Journal, 2018, 334: 948-956. doi: 10.1016/j.cej.2017.10.067
|
[55] |
FANG Z, HU Y Y, ZHANG W W, et al. Shell-free three-dimensional graphene-based monoliths for the aqueous adsorption of organic pollutants[J]. Chemical Engineering Journal, 2017, 316: 24-32. doi: 10.1016/j.cej.2017.01.072
|
[56] |
LI L Y, XU D H, PEI Z G. Kinetics and thermodynamics studies for bisphenol S adsorption on reduced graphene oxide[J]. RSC Advances, 2016, 6(65): 60145-60151. doi: 10.1039/C6RA10607B
|
[57] |
WANG Q, LU X H, CAO Y, et al. Degradation of Bisphenol S by heat activated persulfate: Kinetics study, transformation pathways and influences of co-existing chemicals[J]. Chemical Engineering Journal, 2017, 328: 236-245. doi: 10.1016/j.cej.2017.07.041
|
[58] |
FRANKOWSKI R, PŁATKIEWICZ J, STANISZ E, et al. Biodegradation and photo-Fenton degradation of bisphenol A, bisphenol S and fluconazole in water[J]. Environmental Pollution, 2021, 289: 117947. doi: 10.1016/j.envpol.2021.117947
|
[59] |
LIU Y X, ZHANG X, WU F. Photodegradation of bisphenol AF in montmorillonite dispersions: Kinetics and mechanism study[J]. Applied Clay Science, 2010, 49(3): 182-186. doi: 10.1016/j.clay.2010.05.002
|
[60] |
YANG T, WANG L, LIU Y L, et al. Comparative study on ferrate oxidation of BPS and BPAF: Kinetics, reaction mechanism, and the improvement on their biodegradability[J]. Water Research, 2019, 148: 115-125. doi: 10.1016/j.watres.2018.10.018
|
[61] |
JIA J L, LIU D M, WANG Q, et al. Comparative study on bisphenols oxidation via TiO2 photocatalytic activation of peroxymonosulfate: Effectiveness, mechanism and pathways[J]. Journal of Hazardous Materials, 2022, 424: 127434. doi: 10.1016/j.jhazmat.2021.127434
|
[62] |
IKE M, CHEN M Y, DANZL E, et al. Biodegradation of a variety of bisphenols under aerobic and anaerobic conditions[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2006, 53(6): 153-159. doi: 10.2166/wst.2006.189
|
[63] |
FRANKOWSKI R, ZGOŁA-GRZEŚKOWIAK A, SMUŁEK W, et al. Removal of bisphenol A and its potential substitutes by biodegradation[J]. Applied Biochemistry and Biotechnology, 2020, 191(3): 1100-1110. doi: 10.1007/s12010-020-03247-4
|
[64] |
WANG X W, CHEN J Q, JI R, et al. Degradation of bisphenol S by a bacterial consortium enriched from river sediments[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(4): 630-635. doi: 10.1007/s00128-019-02699-7
|
[65] |
CAO S Q, WANG S F, ZHAO Y Y, et al. Fate of bisphenol S (BPS) and characterization of non-extractable residues in soil: Insights into persistence of BPS[J]. Environment International, 2020, 143: 105908. doi: 10.1016/j.envint.2020.105908
|
[66] |
WANG H, LIU Z H, ZHANG J, et al. Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants[J]. The Science of the Total Environment, 2019, 692: 107-116. doi: 10.1016/j.scitotenv.2019.07.134
|
[67] |
CHOI Y J, NIES L F, LEE L S. Persistence of three bisphenols and other trace organics of concern in anaerobic sludge under methanogenic conditions[J]. Environmental Technology, 2021, 42(9): 1373-1382. doi: 10.1080/09593330.2019.1668966
|
[68] |
OGATA Y, GODA S, TOYAMA T, et al. The 4-tert-butylphenol-utilizing bacterium Sphingobium fuliginis OMI can degrade bisphenols via phenolic ring hydroxylation and meta-cleavage pathway[J]. Environmental Science & Technology, 2013, 47(2): 1017-1023.
|
[69] |
TOYAMA T, OJIMA T, TANAKA Y, et al. Sustainable biodegradation of phenolic endocrine-disrupting chemicals by Phragmites australis-rhizosphere bacteria association[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2013, 68(3): 522-529. doi: 10.2166/wst.2013.234
|
[70] |
TOYAMA T, MOMOTANI N, OGATA Y, et al. Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment[J]. Applied and Environmental Microbiology, 2010, 76(20): 6733-6740. doi: 10.1128/AEM.00258-10
|
[71] |
TOYAMA T, MURASHITA M, KOBAYASHI K, et al. Acceleration of nonylphenol and 4-tert-octylphenol degradation in sediment by Phragmites australis and associated rhizosphere bacteria[J]. Environmental Science & Technology, 2011, 45(15): 6524-6530.
|
[72] |
TANGHE T, DHOOGE W, VERSTRAETE W. Isolation of a bacterial strain able to degrade branched nonylphenol[J]. Applied and Environmental Microbiology, 1999, 65(2): 746-751. doi: 10.1128/AEM.65.2.746-751.1999
|
[73] |
赵晓晴. 椰壳生物炭固定化TTNP3对水环境中双酚类化合物的去除[D]. 南京: 南京大学, 2018.
ZHAO X Q. The removal of bisphenol compounds in water environment by coconut shell biochar immobilized TTNP3[D]. Nanjing: Nanjing University, 2018 (in Chinese).
|
[74] |
SANTISI S, CAPPELLO S, CATALFAMO M, et al. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium[J]. Brazilian Journal of Microbiology, 2015, 46(2): 377-387. doi: 10.1590/S1517-838246120131276
|
[75] |
KOVAČIČ A, GYS C, GULIN M R, et al. Kinetics and biotransformation products of bisphenol F and S during aerobic degradation with activated sludge[J]. Journal of Hazardous Materials, 2021, 404: 124079. doi: 10.1016/j.jhazmat.2020.124079
|
[76] |
HUANG W C, JIA X F, LI J Y, et al. Dynamics of microbial community in the bioreactor for bisphenol S removal[J]. Science of the Total Environment, 2019, 662: 15-21. doi: 10.1016/j.scitotenv.2019.01.173
|
[77] |
LIM B R, DO S H, HONG S H. The impact of humic acid on the removal of bisphenol A by adsorption and ozonation[J]. Desalination and Water Treatment, 2015, 54(4/5): 1226-1232.
|
[78] |
WIRASNITA R, MORI K, TOYAMA T. Effect of activated carbon on removal of four phenolic endocrine-disrupting compounds, bisphenol A, bisphenol F, bisphenol S, and 4-tert-butylphenol in constructed wetlands[J]. Chemosphere, 2018, 210: 717-725. doi: 10.1016/j.chemosphere.2018.07.060
|
[79] |
BECK S, BERRY E, DUKE S, et al. Characterization of Trametes versicolor laccase-catalyzed degradation of estrogenic pollutants: Substrate limitation and product identification[J]. International Biodeterioration & Biodegradation, 2018, 127: 146-159.
|
[80] |
SOLÉ A, MATAMOROS V. Removal of endocrine disrupting compounds from wastewater by microalgae co-immobilized in alginate beads[J]. Chemosphere, 2016, 164: 516-523. doi: 10.1016/j.chemosphere.2016.08.047
|
[81] |
HOU R, GAN L, GUAN F Y, et al. Bioelectrochemically enhanced degradation of bisphenol S: Mechanistic insights from stable isotope-assisted investigations[J]. iScience, 2021, 24(1): 102014. doi: 10.1016/j.isci.2020.102014
|
[82] |
WU X L, GU Y C, WU X Y, et al. Construction of a tetracycline degrading bacterial consortium and its application evaluation in laboratory-scale soil remediation[J]. Microorganisms, 2020, 8(2): 292. doi: 10.3390/microorganisms8020292
|
[83] |
OOI J, LEE L Y, HIEW B Y Z, et al. Assessment of fish scales waste as a low cost and eco-friendly adsorbent for removal of an azo dye: Equilibrium, kinetic and thermodynamic studies[J]. Bioresource Technology, 2017, 245: 656-664. doi: 10.1016/j.biortech.2017.08.153
|
[84] |
DVOŘÁK P, NIKEL P I, DAMBORSKÝ J, et al. Bioremediation 3.0: Engineering pollutant-removing bacteria in the times of systemic biology[J]. Biotechnology Advances, 2017, 35(7): 845-866. doi: 10.1016/j.biotechadv.2017.08.001
|
[85] |
MNIF I, SAHNOUN R, ELLOUZ-CHAABOUNI S, et al. Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil in soil using a newly isolated consortium[J]. Process Safety and Environmental Protection, 2017, 109: 72-81. doi: 10.1016/j.psep.2017.02.002
|
[86] |
SUBASHCHANDRABOSE S R, RAMAKRISHNAN B, MEGHARAJ M, et al. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential[J]. Biotechnology Advances, 2011, 29(6): 896-907. doi: 10.1016/j.biotechadv.2011.07.009
|