[1] ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. Journal of Bacteriology, 1987, 169(12): 5429-5433. doi: 10.1128/jb.169.12.5429-5433.1987
[2] MOJICA F J, DIEZ-VILLASENOR C, GARCIA-MARTINEZ J, et al. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal Of Molecular Evolution, 2005, 60(2): 174-182. doi: 10.1007/s00239-004-0046-3
[3] MOJICA F J, DIEZ-VILLASENOR C, SORIA E, et al. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Molecular Microbiology, 2000, 36(1): 244-246. doi: 10.1046/j.1365-2958.2000.01838.x
[4] JANSEN R, EMBDEN J D, GAASTRA W, et al. Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43(6): 1565-1575. doi: 10.1046/j.1365-2958.2002.02839.x
[5] QIN J J, WANG W, GAO L Q, et al. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics[J]. Chemical Science, 2022, 13(10): 2857-2876. doi: 10.1039/D1SC06269G
[6] KIM S, JI S, KOH H R. CRISPR as a Diagnostic Tool[J]. Biomolecules, 2021, 11(8): 1162. doi: 10.3390/biom11081162
[7] YUE H H, HUANG M Q, TIAN T, et al. Advances in clustered, regularly interspaced short palindromic repeats (CRISPR)-based diagnostic assays assisted by micro/nanotechnologies[J]. ACS Nano, 2021, 15(5): 7848-7859. doi: 10.1021/acsnano.1c02372
[8] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. doi: 10.1126/science.aam9321
[9] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. doi: 10.1126/science.aar6245
[10] BROUGHTON J P, DENG X D, YU G X, et al. CRISPR–Cas12-based detection of SARS-CoV-2[J]. Nature Biotechnology, 2020, 38(7): 870-874. doi: 10.1038/s41587-020-0513-4
[11] SELVAM K, NAJIB M A, KHALID M F, et al. RT-LAMP CRISPR-Cas12/13-Based SARS-CoV-2 Detection Methods[J]. Diagnostics, 2021, 11(9): 1646. doi: 10.3390/diagnostics11091646
[12] LIANG Y H, LIN H Q, ZOU L R, et al. CRISPR-Cas12a-Based Detection for the Major SARS-CoV-2 Variants of Concern[J]. Microbiology Spectrum, 2021, 9(3): e0101721. doi: 10.1128/Spectrum.01017-21
[13] RANJBARIAN F, SHARMA S, FALAPPA G, et al. Isocratic HPLC analysis for the simultaneous determination of dNTPs, rNTPs and ADP in biological samples[J]. Nucleic Acids Research, 2022, 50(3): e18. doi: 10.1093/nar/gkab1117
[14] ZHANG S M, WANG H B, ZHU M J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples[J]. Talanta, 2019, 196: 249-254. doi: 10.1016/j.talanta.2018.12.049
[15] ALBERTI D, VAN'T ERVE M, STEFANIA R, et al. A quantitative relaxometric version of the ELISA test for the measurement of cell surface biomarkers[J]. Angewandte Chemie International Edition, 2014, 53(13): 3488-3491. doi: 10.1002/anie.201310959
[16] LI J J, YANG S S, ZUO C, et al. Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations[J]. ACS Sensors, 2020, 5(4): 970-977. doi: 10.1021/acssensors.9b02305
[17] LI Y Y, LI H D, FANG W K, et al. Amplification of the Fluorescence Signal with Clustered Regularly Interspaced Short Palindromic Repeats-Cas12a Based on Au Nanoparticle-DNAzyme Probe and On-Site Detection of Pb2+ Via the Photonic Crystal Chip[J]. ACS Sensors, 2022, 7(5): 1572-1580. doi: 10.1021/acssensors.2c00516
[18] XU S Q, WANG S T, GUO L, et al. Nanozyme-catalysed CRISPR-Cas12a system for the preamplification-free colorimetric detection of lead ion[J]. Analytica Chimica Acta, 2023, 1243: 340827. doi: 10.1016/j.aca.2023.340827
[19] YUE Y Y, WANG S T, JIN Q, et al. A triple amplification strategy using GR-5 DNAzyme as a signal medium for ultrasensitive detection of trace Pb2+ based on CRISPR/Cas12a empowered electrochemical biosensor[J]. Analytica Chimica Acta, 2023, 1263: 341241. doi: 10.1016/j.aca.2023.341241
[20] CHEN Y J, WU H, QIAN S W J, et al. Applying CRISPR/Cas system as a signal enhancer for DNAzyme-based lead ion detection[J]. Analytica Chimica Acta, 2022, 1192: 339356. doi: 10.1016/j.aca.2021.339356
[21] MA X C, SUO T Y, ZHAO F R, et al. Integrating CRISPR/Cas12a with strand displacement amplification for the ultrasensitive aptasensing of cadmium(II)[J]. Analytical and Bioanalytical Chemistry, 2023, 415(12): 2281-2289. doi: 10.1007/s00216-023-04650-6
[22] IWASAKI R S, BATEY R T. SPRINT: a Cas13a-based platform for detection of small molecules[J]. Nucleic Acids Research, 2020, 48(17): e101. doi: 10.1093/nar/gkaa673
[23] MA Y, MOU Q B, YAN P, et al. A highly sensitive and selective fluoride sensor based on a riboswitch-regulated transcription coupled with CRISPR-Cas13a tandem reaction[J]. Chemical Science, 2021, 12(35): 11740-11747. doi: 10.1039/D1SC03508H
[24] ZHAO Y Q, ZHU L, DING Y X, et al. Simple and cheap CRISPR/Cas12a biosensor based on plug-and-play of DNA aptamers for the detection of endocrine-disrupting compounds[J]. Talanta, 2023, 263: 124761. doi: 10.1016/j.talanta.2023.124761
[25] WANG Y, PENG Y, LI S, et al. The development of a fluorescence/colorimetric biosensor based on the cleavage activity of CRISPR-Cas12a for the detection of non-nucleic acid targets[J]. Journal of Hazardous Materials, 2023, 449: 131044. doi: 10.1016/j.jhazmat.2023.131044
[26] LI Q, LI X B, ZHOU P X, et al. Split aptamer regulated CRISPR/Cas12a biosensor for 17beta-estradiol through a gap-enhanced Raman tags based lateral flow strategy[J]. Biosensors and Bioelectrons, 2022, 215: 114548. doi: 10.1016/j.bios.2022.114548
[27] HU J Y, SONG H J, ZHOU J, et al. Metal-Tagged CRISPR/Cas12a Bioassay Enables Ultrasensitive and Highly Selective Evaluation of Kanamycin Bioaccumulation in Fish Samples[J]. Analytical Chemistry, 2021, 93(42): 14214-14222. doi: 10.1021/acs.analchem.1c03094
[28] CHEN J H, SHI G, YAN C. Portable biosensor for on-site detection of kanamycin in water samples based on CRISPR-Cas12a and an off-the-shelf glucometer[J]. Science of The Total Environment, 2023, 872: 162279. doi: 10.1016/j.scitotenv.2023.162279
[29] LI X P, CHEN X J, MAO M X, et al. Accelerated CRISPR/Cas12a-based small molecule detection using bivalent aptamer[J]. Biosensors and Bioelectronics, 2022, 217: 114725. doi: 10.1016/j.bios.2022.114725
[30] LI D W, LING S, WU H S, et al. CRISPR/Cas12a-based biosensors for ultrasensitive tobramycin detection with single- and double-stranded DNA activators[J]. Sensors and Actuators B: Chemical, 2022, 355: 131329. doi: 10.1016/j.snb.2021.131329
[31] MAHAS A, WANG Q C, MARSIC T, et al. Development of Cas12a-Based Cell-Free Small-Molecule Biosensors via Allosteric Regulation of CRISPR Array Expression[J]. Analytical Chemistry, 2022, 94(11): 4617-4626. doi: 10.1021/acs.analchem.1c04332
[32] YEE B J, SHAFIQAH N F, MOHD-NAIM N F, et al. A CRISPR/Cas12a-based fluorescence aptasensor for the rapid and sensitive detection of ampicillin[J]. International Journal of Biological Macromolecules, 2023, 242(Pt 4): 125211.
[33] HU J Y, ZHOU J, LIU R, et al. Element probe based CRISPR/Cas14 bioassay for non-nucleic-acid targets[J]. Chemical Communications, 2021, 57(80): 10423-10426. doi: 10.1039/D1CC03992J
[34] ZHAO Y, WU W Q, TANG X Q, et al. A universal CRISPR/Cas12a-powered intelligent point-of-care testing platform for multiple small molecules in the healthcare, environment, and food[J]. Biosensors and Bioelectronics, 2023, 225: 115102. doi: 10.1016/j.bios.2023.115102
[35] LIANG M D, LI Z L, WANG W S, et al. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules[J]. Nature Communications, 2019, 10(1): 3672. doi: 10.1038/s41467-019-11648-1
[36] FU R J, WANG Y W, LIU Y L, et al. CRISPR-Cas12a based fluorescence assay for organophosphorus pesticides in agricultural products[J]. Food Chemistry, 2022, 387: 132919. doi: 10.1016/j.foodchem.2022.132919
[37] LI Y, YANG F, YUAN R, et al. Electrochemiluminescence covalent organic framework coupling with CRISPR/Cas12a-mediated biosensor for pesticide residue detection[J]. Food Chemistry, 2022, 389: 133049. doi: 10.1016/j.foodchem.2022.133049
[38] LI L T, HONG F, PAN S X, et al. "Lollipop" particle counting immunoassay based on antigen-powered CRISPR-Cas12a dual signal amplification for the sensitive detection of deoxynivalenol in the environment and food samples[J]. Journal of Hazardous Materials, 2023, 455: 131573. doi: 10.1016/j.jhazmat.2023.131573
[39] NIU C Q, XING X H, ZHANG C. A novel strategy for analyzing aptamer dominated sites and detecting AFB1 based on CRISPR–Cas12a[J]. Sensors & Diagnostics, 2023, 2(1): 155-162.
[40] MA X, ZHANG Y, QIAO X J, et al. Target-Induced AIE Effect Coupled with CRISPR/Cas12a System Dual-Signal Biosensing for the Ultrasensitive Detection of Gliotoxin[J]. Analytical Chemistry, 2023, 95(31): 11723-11731. doi: 10.1021/acs.analchem.3c01760
[41] MAO Z F, WANG X J, CHEN R P, et al. Upconversion-mediated CRISPR-Cas12a biosensing for sensitive detection of ochratoxin A[J]. Talanta, 2022, 242: 123232. doi: 10.1016/j.talanta.2022.123232
[42] LIU X, BU S J, FENG J Q, et al. Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a[J]. Analytical and Bioanalytical Chemistry, 2022, 414(2): 1073-1080. doi: 10.1007/s00216-021-03733-6
[43] WU Y P, CHANG D R, CHANG Y Y, et al. Nucleic Acid Enzyme-Activated CRISPR-Cas12a With Circular CRISPR RNA for Biosensing[J]. Small, 2023, 19(41): e2303007. doi: 10.1002/smll.202303007
[44] SANTORO S W, JOYCE G F. A general purpose RNA-cleaving DNA enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(9): 4262-4266.
[45] LI J, ZHENG W, KWON A H, et al. In vitro selection and characterization of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme[J]. Nucleic Acids Research, 2000, 28(2): 481-488. doi: 10.1093/nar/28.2.481
[46] GAO P, LIU B, PAN W, et al. A Spherical Nucleic Acid Probe Based on the Au–Se Bond[J]. Analytical Chemistry, 2020, 92(12): 8459-8463. doi: 10.1021/acs.analchem.0c01204
[47] CUTLER J I, AUYEUNG E, MIRKIN C A. Spherical Nucleic Acids[J]. Journal of the American Chemical Society, 2012, 134(3): 1376-1391. doi: 10.1021/ja209351u
[48] CHEN Y, CHEN L, OU Y, et al. DNAzyme-based biosensor for Cu2+ ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique[J]. Talanta, 2016, 155: 245-249. doi: 10.1016/j.talanta.2016.04.057
[49] SARAN R, LIU J W. A Silver DNAzyme[J]. Analytical Chemistry, 2016, 88(7): 4014-4020. doi: 10.1021/acs.analchem.6b00327
[50] ZHOU W H, VAZIN M, YU T M, et al. In vitro selection of chromium-dependent DNAzymes for sensing chromium(III) and chromium(VI)[J]. Chemistry, 2016, 22(28): 9835-9840. doi: 10.1002/chem.201601426
[51] Wu Y T, Torabi S F, Lake R J, et al. Simultaneous Fe2+/Fe3+ imaging shows Fe3+ over Fe2+ enrichment in Alzheimer's disease mouse brain[J]. Science Advances, 2023, 9(16): eade7622. doi: 10.1126/sciadv.ade7622
[52] 郑星, 马明, 崔力, 等. 应用于环境分析的切割RNA的脱氧核酶研究进展[J]. 化学通报, 2022, 85(7): 770-780. ZHENG X, MA M, CUI L, et al. Advances in RNA-Cleaving DNAzymes for environmental analysis[J]. Chemistry, 2022, 85(7): 770-780 (in Chinese).
[53] RAJENDRAN M, ELLINGTON A D. Selection of fluorescent aptamer beacons that light up in the presence of zinc[J]. Analytical and Bioanalytical Chemistry, 2008, 390(4): 1067-1075. doi: 10.1007/s00216-007-1735-8
[54] WANG H Y, CHENG H, WANG J N, et al. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II)[J]. Talanta, 2016, 154: 498-503. doi: 10.1016/j.talanta.2016.04.005
[55] WU Y G, ZHAN S S, WANG L M, et al. Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles[J]. Analyst, 2014, 139(6): 1550-1561. doi: 10.1039/C3AN02117C
[56] CHEN Y, LI H H, GAO T, et al. Selection of DNA aptamers for the development of light-up biosensor to detect Pb(II)[J]. Sensors and Actuators B: Chemical, 2018, 254: 214-221. doi: 10.1016/j.snb.2017.07.068
[57] WRZESINSKI J, CIESIOLKA J. Characterization of structure and metal ions specificity of Co2+-binding RNA aptamers[J]. Biochemistry, 2005, 44(16): 6257-6268. doi: 10.1021/bi047397u
[58] QU H, CSORDAS A T, WANG J P, et al. Rapid and Label-Free Strategy to Isolate Aptamers for Metal Ions[J]. ACS Nano, 2016, 10(8): 7558-7565. doi: 10.1021/acsnano.6b02558
[59] 王斌, 邓述波, 黄俊, 等. 我国新兴污染物环境风险评价与控制研究进展[J]. 环境化学, 2013, 32(7): 1129-1136. doi: 10.7524/j.issn.0254-6108.2013.07.003 WANG B, DENG S B, HUANG J, et al. Environmental risk assessment and control of emerging contaminants in china[J]. Environmental Chemistry, 2013, 32(7): 1129-1136 (in Chinese). doi: 10.7524/j.issn.0254-6108.2013.07.003
[60] ZHUO Z J, YU Y Y, WANG M L, et al. Recent Advances in SELEX technology and aptamer applications in biomedicine[J]. International Journal of Molecular Sciences, 2017, 18(10): 2142. doi: 10.3390/ijms18102142
[61] 陈慧甜, 孙清, 时国庆, 等. 核酸适配体在环境分析中的应用[J]. 环境化学, 2015, 34(1): 89-96. doi: 10.7524/j.issn.0254-6108.2015.01.2014101401 CHEN H T, SUN Q, SHI G Q, et al. Application of aptamers to environmental analysis[J]. Environmental Chemistry, 2015, 34(1): 89-96 (in Chinese). doi: 10.7524/j.issn.0254-6108.2015.01.2014101401
[62] 孟雪洁, 张瑜, 刘京华, 等. 纳米金-适配体电化学传感器用于环境水样中双酚A检测[J]. 环境化学, 2023, 42(2): 379-387. doi: 10.7524/j.issn.0254-6108.2021102403 MENG X J, ZHANG Y, LIU J H, et al. Gold nanoparticles-aptamer electrochemical sensor for detection of bisphenol A in environmental waters[J]. Environmental Chemistry, 2023, 42(2): 379-387 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021102403
[63] LIU H M, LU A X, FU H L, et al. Affinity capture of aflatoxin B(1) and B(2) by aptamer-functionalized magnetic agarose microspheres prior to their determination by HPLC[J]. Mikrochimica Acta, 2018, 185(7): 326. doi: 10.1007/s00604-018-2849-8
[64] CAI S D, YAN J H, XIONG H J, et al. Investigations on the interface of nucleic acid aptamers and binding targets[J]. Analyst, 2018, 143(22): 5317-5338. doi: 10.1039/C8AN01467A
[65] LEI Z, LEI P, GUO J F, et al. Recent advances in nanomaterials-based optical and electrochemical aptasensors for detection of cyanotoxins[J]. Talanta, 2022, 248: 123607. doi: 10.1016/j.talanta.2022.123607
[66] MONDAL B, RAMLAL S, LAVU P S R, et al. A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets[J]. Applied Microbiology and Biotechnology, 2015, 99(22): 9791-9803. doi: 10.1007/s00253-015-6858-9
[67] PARK J Y, YANG K A, CHOI Y J, et al. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water[J]. Environment International, 2022, 158: 107000. doi: 10.1016/j.envint.2021.107000
[68] CHEN J H, SHI G, YAN C. Visual test paper for on-site polychlorinated biphenyls detection and its logic gate applications[J]. Analytical Chemistry, 2021, 93(46): 15438-15444. doi: 10.1021/acs.analchem.1c03309
[69] CHEN Y Q, WANG Z M, LIU S Y, et al. A highly sensitive and group-targeting aptasensor for total phthalate determination in the environment[J]. Journal of Hazardous Materials, 2021, 412: 125174. doi: 10.1016/j.jhazmat.2021.125174
[70] 高羽菲, 甄建辉, 赵杰, 等. 比色法适配体传感器在抗生素检测中的研究进展 [J]. 分析实验室, 2023, 1-18. GAO Y F, ZHEN J H, ZHAO J, et al. Advances in antibiotics detection based on colorimetric aptasensors[J]. Chinese Journal of Analysis Laboratory, 2023, 1-18 (in Chinese).
[71] XU G H, WANG C, YU H, et al. Structural basis for high-affinity recognition of aflatoxin B1 by a DNA aptamer[J]. Nucleic Acids Research, 2023, 51(14): 7666-7674. doi: 10.1093/nar/gkad541
[72] MCCONNELL E M, NGUYEN J, LI Y F. Aptamer-based biosensors for environmental monitoring[J]. Frontiers in Chemistry, 2020, 8: 434. doi: 10.3389/fchem.2020.00434
[73] CHANG T J, HE S S, AMINI R, et al. Functional nucleic acids under unusual conditions[J]. ChemBioChem, 2021, 22(14): 2368-2383. doi: 10.1002/cbic.202100087
[74] ACKERMAN C M, MYHRVOLD C, THAKKU S G, et al. Massively multiplexed nucleic acid detection with Cas13[J]. Nature, 2020, 582(7811): 277-282. doi: 10.1038/s41586-020-2279-8
[75] ALI M M, WOLFE M, TRAM K, et al. A DNAzyme‐Based colorimetric paper sensor for helicobacter pylori[J]. Angewandte Chemie International Edition, 2019, 58(29): 9907-9911. doi: 10.1002/anie.201901873
[76] ROTHENBROKER M, MCCONNELL E M, GU J, et al. Selection and Characterization of an RNA-Cleaving DNAzyme Activated by Legionella pneumophila[J]. Angewandte Chemie International Edition, 2021, 60(9): 4782-4788. doi: 10.1002/anie.202012444
[77] ZHOU Q B, ZHANG G X, WU Y P, et al. In Vitro selection of M2+-independent, fast-responding acidic deoxyribozymes for bacterial detection[J]. Journal of the American Chemical Society, 2023, 145(39): 21370-21377. doi: 10.1021/jacs.3c06155
[78] CHANG T J, LI G P, CHANG D R, et al. An RNA‐Cleaving DNAzyme that requires an organic solvent to function[J]. Angewandte Chemie International Edition, 2023, 62(42): e202310941. doi: 10.1002/anie.202310941