[1] |
DU Z W, DENG S B, BEI Y, et al. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents: A review[J]. Journal of Hazardous Materials, 2014, 274: 443-454. doi: 10.1016/j.jhazmat.2014.04.038
|
[2] |
VECITIS C D, PARK H, CHENG J, et al. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA)[J]. Frontiers of Environmental Science & Engineering in China, 2009, 3(2): 129-151.
|
[3] |
ZAGGIA A, CONTE L, FALLETTI L, et al. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants[J]. Water Research, 2016, 91: 137-146. doi: 10.1016/j.watres.2015.12.039
|
[4] |
LI F, DUAN J, TIAN S T, et al. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment[J]. Chemical Engineering Journal, 2020, 380: 122506. doi: 10.1016/j.cej.2019.122506
|
[5] |
LIND P M, LIND L, SALIHOVIC S, et al. Serum levels of perfluoroalkyl substances (PFAS) and body composition - A cross-sectional study in a middle-aged population[J]. Environmental Research, 2022, 209: 112677. doi: 10.1016/j.envres.2022.112677
|
[6] |
COPERCHINI F, CROCE L, RICCI G, et al. Thyroid disrupting effects of old and new generation PFAS[J]. Frontiers in Endocrinology, 2021, 11: 612320. doi: 10.3389/fendo.2020.612320
|
[7] |
HUANG K H, LI Y L, BU D, et al. Trophic magnification of short-chain per- and polyfluoroalkyl substances in a terrestrial food chain from the Tibetan Plateau[J]. Environmental Science & Technology Letters, 2022, 9(2): 147-152.
|
[8] |
BOUCHER J M, COUSINS I T, SCHERINGER M, et al. Toward a comprehensive global emission inventory of C4–C10 perfluoroalkanesulfonic acids (PFSAs) and related precursors: Focus on the life cycle of C6- and C10-based products[J]. Environmental Science & Technology Letters, 2019, 6(1): 1-7.
|
[9] |
GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration[J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381
|
[10] |
MOODY C A, FIELD J A. Determination of perfluorocarboxylates in groundwater impacted by fire-fighting activity[J]. Environmental Science & Technology, 1999, 33(16): 2800-2806.
|
[11] |
STOCK N L, FURDUI V I, MUIR D C G, et al. Perfluoroalkyl contaminants in the Canadian Arctic: Evidence of atmospheric transport and local contamination[J]. Environmental Science & Technology, 2007, 41(10): 3529-3536.
|
[12] |
SO M K, MIYAKE Y, YEUNG W Y, et al. Perfluorinated compounds in the Pearl River and Yangtze River of China[J]. Chemosphere, 2007, 68(11): 2085-2095. doi: 10.1016/j.chemosphere.2007.02.008
|
[13] |
AHRENS L, FELIZETER S, EBINGHAUS R. Spatial distribution of polyfluoroalkyl compounds in seawater of the German Bight[J]. Chemosphere, 2009, 76(2): 179-184. doi: 10.1016/j.chemosphere.2009.03.052
|
[14] |
MÖLLER A, AHRENS L, SURM R, et al. Distribution and sources of polyfluoroalkyl substances (PFAS) in the River Rhine watershed[J]. Environmental Pollution, 2010, 158(10): 3243-3250. doi: 10.1016/j.envpol.2010.07.019
|
[15] |
KIM J, XIN X Y, MAMO B T, et al. Occurrence and fate of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. ACS ES& T Water, 2022, 2(8): 1380-1390.
|
[16] |
YAN H, ZHANG C J, ZHOU Q, et al. Short- and long-chain perfluorinated acids in sewage sludge from Shanghai, China[J]. Chemosphere, 2012, 88(11): 1300-1305. doi: 10.1016/j.chemosphere.2012.03.105
|
[17] |
ZHAO P J, XIA X H, DONG J W, et al. Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river[J]. The Science of the Total Environment, 2016, 568: 57-65. doi: 10.1016/j.scitotenv.2016.05.221
|
[18] |
CAI M H, ZHAO Z, YIN Z G, et al. Occurrence of perfluoroalkyl compounds in surface waters from the North Pacific to the Arctic Ocean[J]. Environmental Science & Technology, 2012, 46(2): 661-668.
|
[19] |
HEPBURN E, MADDEN C, SZABO D, et al. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct[J]. Environmental Pollution, 2019, 248: 101-113. doi: 10.1016/j.envpol.2019.02.018
|
[20] |
DAUCHY X, BOITEUX V, BACH C, et al. Per- and polyfluoroalkyl substances in firefighting foam concentrates and water samples collected near sites impacted by the use of these foams[J]. Chemosphere, 2017, 183: 53-61. doi: 10.1016/j.chemosphere.2017.05.056
|
[21] |
BANZHAF S, FILIPOVIC M, LEWIS J, et al. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs)[J]. Ambio, 2017, 46(3): 335-346. doi: 10.1007/s13280-016-0848-8
|
[22] |
CHOW S J, OJEDA N, JACANGELO J G, et al. Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U. S. bottled water[J]. Water Research, 2021, 201: 117292. doi: 10.1016/j.watres.2021.117292
|
[23] |
LI J F, HE J H, NIU Z G, et al. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: Present implications of replacing legacy PFASs[J]. Environment International, 2020, 135: 105419. doi: 10.1016/j.envint.2019.105419
|
[24] |
WANG X P, SCHUSTER J, JONES K C, et al. Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan Plateau[J]. Atmospheric Chemistry and Physics, 2018, 18(12): 8745-8755. doi: 10.5194/acp-18-8745-2018
|
[25] |
LIU S Y, JIN B, ARP H P H, et al. The fate and transport of chlorinated polyfluorinated ether sulfonates and other PFAS through industrial wastewater treatment facilities in China[J]. Environmental Science & Technology, 2022, 56(5): 3002-3010.
|
[26] |
PÉTRÉ M A, SALK K R, STAPLETON H M, et al. Per- and polyfluoroalkyl substances (PFAS) in river discharge: Modeling loads upstream and downstream of a PFAS manufacturing plant in the Cape Fear watershed, North Carolina[J]. The Science of the Total Environment, 2022, 831: 154763. doi: 10.1016/j.scitotenv.2022.154763
|
[27] |
BAI X L, SON Y. Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA[J]. The Science of the Total Environment, 2021, 751: 141622. doi: 10.1016/j.scitotenv.2020.141622
|
[28] |
WANG R M, ZHANG J, YANG Y Y, et al. Emerging and legacy per-and polyfluoroalkyl substances in the rivers of a typical industrialized province of China: Spatiotemporal variations, mass discharges and ecological risks[J]. Frontiers in Environmental Science, 2022, 10: 986719. doi: 10.3389/fenvs.2022.986719
|
[29] |
YAMAZAKI E, TANIYASU S, WANG X H, et al. Per- and polyfluoroalkyl substances in surface water, gas and particle in open ocean and coastal environment[J]. Chemosphere, 2021, 272: 129869. doi: 10.1016/j.chemosphere.2021.129869
|
[30] |
HAN T Z, CHEN J H, LIN K, et al. Spatial distribution, vertical profiles and transport of legacy and emerging per- and polyfluoroalkyl substances in the Indian Ocean[J]. Journal of Hazardous Materials, 2022, 437: 129264. doi: 10.1016/j.jhazmat.2022.129264
|
[31] |
WANG Q, TSUI M M P, RUAN Y F, et al. Occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in the seawater and sediment of the South China Sea coastal region[J]. Chemosphere, 2019, 231: 468-477. doi: 10.1016/j.chemosphere.2019.05.162
|
[32] |
HAO S L, REARDON P N, CHOI Y J, et al. Hydrothermal alkaline treatment (HALT) of foam fractionation concentrate derived from PFAS-contaminated groundwater[J]. Environmental Science & Technology, 2023, 57(44): 17154-17165.
|
[33] |
LIU T, HU L X, HAN Y, et al. Non-target and target screening of per- and polyfluoroalkyl substances in landfill leachate and impact on groundwater in Guangzhou, China[J]. The Science of the Total Environment, 2022, 844: 157021. doi: 10.1016/j.scitotenv.2022.157021
|
[34] |
WANG X P, CHEN M K, GONG P, et al. Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over Western China[J]. Environment International, 2019, 124: 294-301. doi: 10.1016/j.envint.2018.12.057
|
[35] |
PÉTRÉ M A, GENEREUX D P, KOROPECKYJ-COX L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in north Carolina, USA[J]. Environmental Science & Technology, 2021, 55(9): 5848-5856.
|
[36] |
BRANDSMA S H, KOEKKOEK J C, van VELZEN M J M, et al. The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands[J]. Chemosphere, 2019, 220: 493-500. doi: 10.1016/j.chemosphere.2018.12.135
|
[37] |
CAI M H, YANG H Z, XIE Z Y, et al. Per- and polyfluoroalkyl substances in snow, lake, surface runoff water and coastal seawater in Fildes Peninsula, King George Island, Antarctica[J]. Journal of Hazardous Materials, 2012, 209/210: 335-342. doi: 10.1016/j.jhazmat.2012.01.030
|
[38] |
COUSINS I T, JOHANSSON J H, SALTER M E, et al. Outside the safe operating space of a new planetary boundary for per- and polyfluoroalkyl substances (PFAS)[J]. Environmental Science & Technology, 2022, 56(16): 11172-11179.
|
[39] |
YAO Y M, SUN H W, GAN Z W, et al. Nationwide distribution of per- and polyfluoroalkyl substances in outdoor dust in mainland China from eastern to western areas[J]. Environmental Science & Technology, 2016, 50(7): 3676-3685.
|
[40] |
CHEN M K, WANG C F, WANG X P, et al. Release of perfluoroalkyl substances from melting glacier of the Tibetan Plateau: Insights into the impact of global warming on the cycling of emerging pollutants[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(13): 7442-7456. doi: 10.1029/2019JD030566
|
[41] |
WANG Z Y, COUSINS I T, SCHERINGER M, et al. Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions[J]. Environment International, 2015, 75: 172-179. doi: 10.1016/j.envint.2014.11.013
|
[42] |
WANG Z Y, DeWITT J C, HIGGINS C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science & Technology, 2017, 51(5): 2508-2518.
|
[43] |
HUANG M C, DZIERLENGA A L, ROBINSON V G, et al. Toxicokinetics of perfluorobutane sulfonate (PFBS), perfluorohexane-1-sulphonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) in male and female Hsd: Sprague Dawley SD rats after intravenous and gavage administration[J]. Toxicology Reports, 2019, 6: 645-655. doi: 10.1016/j.toxrep.2019.06.016
|
[44] |
KUDO N, SUZUKI E, KATAKURA M, et al. Comparison of the elimination between perfluorinated fatty acids with different carbon chain length in rats[J]. Chemico-Biological Interactions, 2001, 134(2): 203-216. doi: 10.1016/S0009-2797(01)00155-7
|
[45] |
JIA X, JIN Q, FANG J L, et al. Emerging and legacy per- and polyfluoroalkyl substances in an elderly population in Jinan, China: The exposure level, short-term variation, and intake assessment[J]. Environmental Science & Technology, 2022, 56(12): 7905-7916.
|
[46] |
CHEN F J, WEI C Y, CHEN Q Y, et al. Internal concentrations of perfluorobutane sulfonate (PFBS) comparable to those of perfluorooctane sulfonate (PFOS) induce reproductive toxicity in Caenorhabditis elegans[J]. Ecotoxicology and Environmental Safety, 2018, 158: 223-229. doi: 10.1016/j.ecoenv.2018.04.032
|
[47] |
CRUTE C E, HALL S M, LANDON C D, et al. Evaluating maternal exposure to an environmental per and polyfluoroalkyl substances (PFAS) mixture during pregnancy: Adverse maternal and fetoplacental effects in a New Zealand White (NZW) rabbit model[J]. The Science of the Total Environment, 2022, 838(Pt 4): 156499.
|
[48] |
WEATHERLY L M, SHANE H L, LUKOMSKA E, et al. Systemic toxicity induced by topical application of heptafluorobutyric acid (PFBA) in a murine model[J]. Food and Chemical Toxicology, 2021, 156: 112528. doi: 10.1016/j.fct.2021.112528
|
[49] |
FENG X J, CAO X Y, ZHAO S S, et al. Exposure of pregnant mice to perfluorobutanesulfonate causes hypothyroxinemia and developmental abnormalities in female offspring[J]. Toxicological Sciences, 2017, 155(2): 409-419. doi: 10.1093/toxsci/kfw219
|
[50] |
RERICHA Y, CAO D P, TRUONG L, et al. Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity[J]. iScience, 2022, 25(2): 103789. doi: 10.1016/j.isci.2022.103789
|
[51] |
NIAN M, LUO K, LUO F, et al. Association between prenatal exposure to PFAS and fetal sex hormones: Are the short-chain PFAS safer?[J]. Environmental Science & Technology, 2020, 54(13): 8291-8299.
|
[52] |
CAI D, LI Q Q, CHU C, et al. High trans-placental transfer of perfluoroalkyl substances alternatives in the matched maternal-cord blood serum: Evidence from a birth cohort study[J]. The Science of the Total Environment, 2020, 705: 135885. doi: 10.1016/j.scitotenv.2019.135885
|
[53] |
YU Q, ZHANG R Q, DENG S B, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study[J]. Water Research, 2009, 43(4): 1150-1158. doi: 10.1016/j.watres.2008.12.001
|
[54] |
HANSEN M C, BØRRESEN M H, SCHLABACH M, et al. Sorption of perfluorinated compounds from contaminated water to activated carbon[J]. Journal of Soils and Sediments, 2010, 10(2): 179-185. doi: 10.1007/s11368-009-0172-z
|
[55] |
PAULETTO P S, BANDOSZ T J. Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance[J]. Journal of Hazardous Materials, 2022, 425: 127810. doi: 10.1016/j.jhazmat.2021.127810
|
[56] |
WU C Y, KLEMES M J, TRANG B, et al. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices[J]. Water Research, 2020, 182: 115950. doi: 10.1016/j.watres.2020.115950
|
[57] |
MURRAY C C, VATANKHAH H, McDONOUGH C A, et al. Removal of per- and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration[J]. Journal of Hazardous Materials, 2019, 366: 160-168. doi: 10.1016/j.jhazmat.2018.11.050
|
[58] |
INYANG M, DICKENSON E R V. The use of carbon adsorbents for the removal of perfluoroalkyl acids from potable reuse systems[J]. Chemosphere, 2017, 184: 168-175. doi: 10.1016/j.chemosphere.2017.05.161
|
[59] |
LIU N, WU C, LYU G F, et al. Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA)[J]. The Science of the Total Environment, 2021, 798: 149191. doi: 10.1016/j.scitotenv.2021.149191
|
[60] |
ZHANG W L, ZHANG D Q, LIANG Y N. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review[J]. Environmental Pollution, 2019, 247: 266-276. doi: 10.1016/j.envpol.2019.01.045
|
[61] |
CHEN X, XIA X H, WANG X L, et al. A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes[J]. Chemosphere, 2011, 83(10): 1313-1319. doi: 10.1016/j.chemosphere.2011.04.018
|
[62] |
DENG S B, ZHANG Q Y, NIE Y, et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes[J]. Environmental Pollution, 2012, 168: 138-144. doi: 10.1016/j.envpol.2012.03.048
|
[63] |
DENG S B, BEI Y, LU X Y, et al. Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes[J]. Frontiers of Environmental Science & Engineering, 2015, 9(5): 784-792.
|
[64] |
PARK M, WU S M, LOPEZ I J, et al. Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics[J]. Water Research, 2020, 170: 115364. doi: 10.1016/j.watres.2019.115364
|
[65] |
ZHANG D Q, ZHANG W L, LIANG Y N. Adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) from aqueous solution - A review[J]. The Science of the Total Environment, 2019, 694: 133606. doi: 10.1016/j.scitotenv.2019.133606
|
[66] |
RAYNE S, FOREST K. Perfluoroalkyl sulfonic and carboxylic acids: A critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(12): 1145-1199.
|
[67] |
JIANG X Z, WANG W, YU G, et al. Contribution of nanobubbles for PFAS adsorption on graphene and OH- and NH2-functionalized graphene: Comparing simulations with experimental results[J]. Environmental Science & Technology, 2021, 55(19): 13254-13263.
|
[68] |
McCLEAF P, ENGLUND S, ÖSTLUND A, et al. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests[J]. Water Research, 2017, 120: 77-87. doi: 10.1016/j.watres.2017.04.057
|
[69] |
MURRAY C C, MARSHALL R E, LIU C J, et al. PFAS treatment with granular activated carbon and ion exchange resin: Comparing chain length, empty bed contact time, and cost[J]. Journal of Water Process Engineering, 2021, 44: 102342. doi: 10.1016/j.jwpe.2021.102342
|
[70] |
BRUMOVSKÝ M, BEČANOVÁ J, KARÁSKOVÁ P, et al. Retention performance of three widely used SPE sorbents for the extraction of perfluoroalkyl substances from seawater[J]. Chemosphere, 2018, 193: 259-269. doi: 10.1016/j.chemosphere.2017.10.174
|
[71] |
CHULARUEANGAKSORN P, TANAKA S, FUJII S, et al. Adsorption of perfluorooctanoic acid (PFOA) onto anion exchange resin, non-ion exchange resin, and granular-activated carbon by batch and column[J]. Desalination and Water Treatment, 2014, 52(34/35/36): 6542-6548.
|
[72] |
SCHURICHT F, BOROVINSKAYA E S, RESCHETILOWSKI W. Removal of perfluorinated surfactants from wastewater by adsorption and ion exchange - Influence of material properties, sorption mechanism and modeling[J]. Journal of Environmental Sciences (China), 2017, 54: 160-170. doi: 10.1016/j.jes.2016.06.011
|
[73] |
DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry[J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038
|
[74] |
BOYER T H, SINGER P C. Stoichiometry of removal of natural organic matter by ion exchange[J]. Environmental Science & Technology, 2008, 42(2): 608-613.
|
[75] |
DIXIT F, DUTTA R, BARBEAU B, et al. PFAS removal by ion exchange resins: A review[J]. Chemosphere, 2021, 272: 129777. doi: 10.1016/j.chemosphere.2021.129777
|
[76] |
DENG S B, NIU L, BEI Y, et al. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization[J]. Chemosphere, 2013, 91(2): 124-130. doi: 10.1016/j.chemosphere.2012.11.015
|
[77] |
ATEIA M, ATTIA M F, MAROLI A, et al. Rapid removal of poly- and perfluorinated alkyl substances by poly(ethylenimine)-functionalized cellulose microcrystals at environmentally relevant conditions[J]. Environmental Science & Technology Letters, 2018, 5(12): 764-769.
|
[78] |
WEISS-ERRICO M J, O’SHEA K E. Detailed NMR investigation of cyclodextrin-perfluorinated surfactant interactions in aqueous media[J]. Journal of Hazardous Materials, 2017, 329: 57-65. doi: 10.1016/j.jhazmat.2017.01.017
|
[79] |
YANG A N, CHING C, EASLER M, et al. Cyclodextrin polymers with nitrogen-containing tripodal crosslinkers for efficient PFAS adsorption[J]. ACS Materials Letters, 2020, 2(9): 1240-1245. doi: 10.1021/acsmaterialslett.0c00240
|
[80] |
WEISS-ERRICO M J, O’SHEA K E. Enhanced host–guest complexation of short chain perfluoroalkyl substances with positively charged β-cyclodextrin derivatives[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 95(1): 111-117.
|
[81] |
LLORCA M, SCHIRINZI G, MARTÍNEZ M, et al. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions[J]. Environmental Pollution, 2018, 235: 680-691. doi: 10.1016/j.envpol.2017.12.075
|
[82] |
JI W, XIAO L L, LING Y H, et al. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks[J]. Journal of the American Chemical Society, 2018, 140(40): 12677-12681. doi: 10.1021/jacs.8b06958
|
[83] |
ATEIA M, ARIFUZZAMAN M, PELLIZZERI S, et al. Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels[J]. Water Research, 2019, 163: 114874. doi: 10.1016/j.watres.2019.114874
|
[84] |
YU J, LV L, LAN P, et al. Effect of effluent organic matter on the adsorption of perfluorinated compounds onto activated carbon[J]. Journal of Hazardous Materials, 2012, 225/226: 99-106. doi: 10.1016/j.jhazmat.2012.04.073
|
[85] |
LEE T E, SPETH T F, NADAGOUDA M N. High-pressure membrane filtration processes for separation of Per- and polyfluoroalkyl substances (PFAS)[J]. Chemical Engineering Journal, 2022, 431: 134023. doi: 10.1016/j.cej.2021.134023
|
[86] |
ZENG C H, TANAKA S, SUZUKI Y, et al. Rejection of trace level perfluorohexanoic acid (PFHxA) in pure water by loose nanofiltration membrane[J]. Journal of Water and Environment Technology, 2017, 15(3): 120-127. doi: 10.2965/jwet.16-072
|
[87] |
FRANKE V, McCLEAF P, LINDEGREN K, et al. Efficient removal of per- and polyfluoroalkyl substances (PFASs) in drinking water treatment: Nanofiltration combined with active carbon or anion exchange[J]. Environmental Science: Water Research & Technology, 2019, 5(11): 1836-1843.
|
[88] |
FRANKE V, ULLBERG M, McCLEAF P, et al. The price of really clean water: Combining nanofiltration with granular activated carbon and anion exchange resins for the removal of per- and polyfluoralkyl substances (PFASs) in drinking water production[J]. ACS ES& T Water, 2021, 1(4): 782-795.
|
[89] |
WANG J X, WANG L, XU C Q, et al. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants[J]. Chemical Engineering Journal, 2018, 332: 787-797. doi: 10.1016/j.cej.2017.09.061
|
[90] |
ZHANG J H, HUANG Z, GAO L, et al. Study of MOF incorporated dual layer membrane with enhanced removal of ammonia and per-/ poly-fluoroalkyl substances (PFAS) in landfill leachate treatment[J]. The Science of the Total Environment, 2022, 806(Pt 4): 151207.
|
[91] |
LIU Y, LI T Y, BAO J, et al. A review of treatment techniques for short-chain perfluoroalkyl substances[J]. Applied Sciences, 2022, 12(4): 1941. doi: 10.3390/app12041941
|
[92] |
NIU J F, LIN H, XU J L, et al. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by ce-doped modified porous nanocrystalline PbO2 film electrode[J]. Environmental Science & Technology, 2012, 46(18): 10191-10198.
|
[93] |
LOW C T J, WALSH F C, CHAKRABARTI M H, et al. Electrochemical approaches to the production of graphene flakes and their potential applications[J]. Carbon, 2013, 54: 1-21. doi: 10.1016/j.carbon.2012.11.030
|
[94] |
BARISCI S, SURI R. Electrooxidation of short- and long-chain perfluoroalkyl substances (PFASs) under different process conditions[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105323. doi: 10.1016/j.jece.2021.105323
|
[95] |
NIU J F, LI Y, SHANG E X, et al. Electrochemical oxidation of perfluorinated compounds in water[J]. Chemosphere, 2016, 146: 526-538. doi: 10.1016/j.chemosphere.2015.11.115
|
[96] |
LIAO Z H, FARRELL J. Electrochemical oxidation of perfluorobutane sulfonate using boron-doped diamond film electrodes[J]. Journal of Applied Electrochemistry, 2009, 39(10): 1993-1999. doi: 10.1007/s10800-009-9909-z
|
[97] |
LEUNG S C E, SHUKLA P, CHEN D C, et al. Emerging technologies for PFOS/PFOA degradation and removal: A review[J]. The Science of the Total Environment, 2022, 827: 153669. doi: 10.1016/j.scitotenv.2022.153669
|
[98] |
HORI H, YAMAMOTO A, HAYAKAWA E, et al. Efficient decomposition of environmentally persistent perfluorocarboxylic acids by use of persulfate as a photochemical oxidant[J]. Environmental Science & Technology, 2005, 39(7): 2383-2388.
|
[99] |
BANAYAN ESFAHANI E, MOHSENI M. Fluence-based photo-reductive decomposition of PFAS using vacuum UV (VUV) irradiation: Effects of key parameters and decomposition mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107050. doi: 10.1016/j.jece.2021.107050
|
[100] |
GIRI R R, OZAKI H, MORIGAKI T, et al. UV photolysis of perfluorooctanoic acid (PFOA) in dilute aqueous solution[J]. Water Science and Technology, 2011, 63(2): 276-282. doi: 10.2166/wst.2011.050
|
[101] |
RAO U, SU Y M, KHOR C M, et al. Structural dependence of reductive defluorination of linear PFAS compounds in a UV/electrochemical system[J]. Environmental Science & Technology, 2020, 54(17): 10668-10677.
|
[102] |
HORI H, YAMAMOTO A, KOIKE K, et al. Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions[J]. Chemosphere, 2007, 68(3): 572-578. doi: 10.1016/j.chemosphere.2006.12.038
|
[103] |
XU B T, AHMED M B, ZHOU J L, et al. Photocatalytic removal of perfluoroalkyl substances from water and wastewater: Mechanism, kinetics and controlling factors[J]. Chemosphere, 2017, 189: 717-729. doi: 10.1016/j.chemosphere.2017.09.110
|
[104] |
CHEN M J, LO S L, LEE Y C, et al. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide[J]. Journal of Hazardous Materials, 2016, 303: 111-118. doi: 10.1016/j.jhazmat.2015.10.011
|
[105] |
LI M J, YU Z B, LIU Q, et al. Photocatalytic decomposition of perfluorooctanoic acid by noble metallic nanoparticles modified TiO2[J]. Chemical Engineering Journal, 2016, 286: 232-238. doi: 10.1016/j.cej.2015.10.037
|
[106] |
LI Z M, ZHANG P Y, SHAO T, et al. Different nanostructured In2O3 for photocatalytic decomposition of perfluorooctanoic acid (PFOA)[J]. Journal of Hazardous Materials, 2013, 260: 40-46. doi: 10.1016/j.jhazmat.2013.04.042
|
[107] |
BAO Y X, DENG S S, JIANG X S, et al. Degradation of PFOA substitute: GenX (HFPO-DA ammonium salt): Oxidation with UV/persulfate or reduction with UV/sulfite?[J]. Environmental Science & Technology, 2018, 52(20): 11728-11734.
|
[108] |
QIAN Y J, GUO X, ZHANG Y L, et al. Perfluorooctanoic acid degradation using UV-persulfate process: Modeling of the degradation and Chlorate formation[J]. Environmental Science & Technology, 2016, 50(2): 772-781.
|
[109] |
LIU Z K, CHEN Z H, GAO J Y, et al. Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite + iodide: Reaction mechanisms and system efficiencies[J]. Environmental Science & Technology, 2022, 56(6): 3699-3709.
|
[110] |
KONG J Y, ZHANG F, ZHANG C X, et al. An efficient electrochemical oxidation of C(sp3)-H bond for the synthesis of arylketones[J]. Molecular Catalysis, 2022, 530: 112633. doi: 10.1016/j.mcat.2022.112633
|
[111] |
LIU G S, FENG C J, SHAO P H. Degradation of perfluorooctanoic acid with hydrated electron by a heterogeneous catalytic system[J]. Environmental Science & Technology, 2022, 56(10): 6223-6231.
|
[112] |
BANAYAN ESFAHANI E, ASADI ZEIDABADI F, ZHANG S Y, et al. Photo-chemical/catalytic oxidative/reductive decomposition of per- and poly-fluoroalkyl substances (PFAS), decomposition mechanisms and effects of key factors: A review[J]. Environmental Science: Water Research & Technology, 2022, 8(4): 698-728.
|
[113] |
CHEN M J, LO S L, LEE Y C, et al. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide[J]. Journal of Hazardous Materials, 2015, 288: 168-175. doi: 10.1016/j.jhazmat.2015.02.004
|
[114] |
WINCHELL L J, ROSS J J, WELLS M J M, et al. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review[J]. Water Environment Research, 2021, 93(6): 826-843. doi: 10.1002/wer.1483
|
[115] |
SOLO-GABRIELE H M, JONES A S, LINDSTROM A B, et al. Waste type, incineration, and aeration are associated with per- and polyfluoroalkyl levels in landfill leachates[J]. Waste Management, 2020, 107: 191-200. doi: 10.1016/j.wasman.2020.03.034
|
[116] |
ELLIS D A, MABURY S A, MARTIN J W, et al. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment[J]. Nature, 2001, 412(6844): 321-324. doi: 10.1038/35085548
|
[117] |
GARCÍA A N, VICIANO N, FONT R. Products obtained in the fuel-rich combustion of PTFE at high temperature[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80(1): 85-91. doi: 10.1016/j.jaap.2007.01.004
|
[118] |
KRUSIC P J, MARCHIONE A A, ROE D C. Gas-phase NMR studies of the thermolysis of perfluorooctanoic acid[J]. Journal of Fluorine Chemistry, 2005, 126(11/12): 1510-1516.
|
[119] |
WATANABE N, TAKATA M, TAKEMINE S, et al. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere[J]. Environmental Science and Pollution Research International, 2018, 25(8): 7200-7205. doi: 10.1007/s11356-015-5353-2
|
[120] |
KESWANI M, RAGHAVAN S, DEYMIER P. Characterization of transient cavitation in gas sparged solutions exposed to megasonic field using cyclic voltammetry[J]. Microelectronic Engineering, 2013, 102: 91-97. doi: 10.1016/j.mee.2011.11.013
|
[121] |
WU T Y, GUO N Q, TEH C Y, et al. Theory and fundamentals of ultrasound[M]// Advances in Ultrasound Technology for Environmental Remediation. Dordrecht: Springer, 2013: 5-12.
|
[122] |
WEI Z S, WEAVERS L K. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors[J]. Ultrasonics Sonochemistry, 2016, 31: 490-498. doi: 10.1016/j.ultsonch.2016.01.036
|
[123] |
SIDNELL T, WOOD R J, HURST J, et al. Sonolysis of per- and poly fluoroalkyl substances (PFAS): A meta-analysis[J]. Ultrasonics Sonochemistry, 2022, 87: 105944. doi: 10.1016/j.ultsonch.2022.105944
|
[124] |
NZERIBE B N, CRIMI M, MEDEDOVIC THAGARD S, et al. Physico-Chemical Processes for the Treatment of Per- And Polyfluoroalkyl Substances (PFAS): A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(10): 866-915. doi: 10.1080/10643389.2018.1542916
|
[125] |
MORIWAKI H, TAKAGI Y, TANAKA M, et al. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid[J]. Environmental Science & Technology, 2005, 39(9): 3388-3392.
|
[126] |
CAMPBELL T Y, VECITIS C D, MADER B T, et al. Perfluorinated surfactant chain-length effects on sonochemical kinetics[J]. The Journal of Physical Chemistry. A, 2009, 113(36): 9834-9842. doi: 10.1021/jp903003w
|
[127] |
ABAD FERNANDEZ N, RODRIGUEZ-FREIRE L, KESWANI M, et al. Effect of chemical structure on the sonochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs)[J]. Environmental Science: Water Research & Technology, 2016, 2(6): 975-983.
|
[128] |
RODRIGUEZ-FREIRE L, ABAD-FERNÁNDEZ N, SIERRA-ALVAREZ R, et al. Sonochemical degradation of perfluorinated chemicals in aqueous film-forming foams[J]. Journal of Hazardous Materials, 2016, 317: 275-283. doi: 10.1016/j.jhazmat.2016.05.078
|
[129] |
LEI Y J, TIAN Y, SOBHANI Z, et al. Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate[J]. Chemical Engineering Journal, 2020, 388: 124215. doi: 10.1016/j.cej.2020.124215
|
[130] |
KWON B G, LIM H J, NA S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant[J]. Chemosphere, 2014, 109: 221-225. doi: 10.1016/j.chemosphere.2014.01.072
|
[131] |
RUIZ-URIGÜEN M, SHUAI W T, HUANG S, et al. Biodegradation of PFOA in microbial electrolysis cells by Acidimicrobiaceae sp. strain A6[J]. Chemosphere, 2022, 292: 133506. doi: 10.1016/j.chemosphere.2021.133506
|
[132] |
HUANG S, JAFFÉ P R. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6[J]. Environmental Science & Technology, 2019, 53(19): 11410-11419.
|
[133] |
PAN C G, LIU Y S, YING G G. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk[J]. Water Research, 2016, 106: 562-570. doi: 10.1016/j.watres.2016.10.045
|
[134] |
OCHOA-HERRERA V, FIELD J A, LUNA-VELASCO A, et al. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs)[J]. Environmental Science: Processes & Impacts, 2016, 18(9): 1236-1246.
|
[135] |
CHE S, JIN B S, LIU Z K, et al. Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities[J]. Environmental Science & Technology Letters, 2021, 8(8): 668-674.
|
[136] |
FITZGERALD N J M, TEMME H R, SIMCIK M F, et al. Aqueous film forming foam and associated perfluoroalkyl substances inhibit methane production and Co-contaminant degradation in an anaerobic microbial community[J]. Environmental Science. Processes & Impacts, 2019, 21(11): 1915-1925.
|
[137] |
KRIPPNER J, BRUNN H, FALK S, et al. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays)[J]. Chemosphere, 2014, 94: 85-90. doi: 10.1016/j.chemosphere.2013.09.018
|
[138] |
COSTELLO M C S, LEE L S. Sources, fate, and plant uptake in agricultural systems of per- and polyfluoroalkyl substances[J]. Current Pollution Reports, 2020, 164, doi. org/10.1007/s40726-020-00168-y.
|
[139] |
STRATTON G R, DAI F, BELLONA C L, et al. Plasma-based water treatment: Efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater[J]. Environmental Science & Technology, 2017, 51(3): 1643-1648.
|
[140] |
SINGH R K, FERNANDO S, BAYGI S F, et al. Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process[J]. Environmental Science & Technology, 2019, 53(5): 2731-2738.
|
[141] |
BURNS D J, STEVENSON P, MURPHY P J C. PFAS removal from groundwaters using Surface-Active Foam Fractionation[J]. Remediation Journal, 2021, 31(4): 19-33. doi: 10.1002/rem.21694
|
[142] |
BUCKLEY T, XU X Y, RUDOLPH V, et al. Review of foam fractionation as a water treatment technology[J]. Separation Science and Technology, 2022, 57(6): 929-958. doi: 10.1080/01496395.2021.1946698
|
[143] |
McCLEAF P, KJELLGREN Y, AHRENS L. Foam fractionation removal of multiple per- and polyfluoroalkyl substances from landfill leachate[J]. AWWA Water Science, 2021, 3(5): 1238. doi: 10.1002/aws2.1238
|
[144] |
DAS S, RONEN A. A review on removal and destruction of per- and polyfluoroalkyl substances (PFAS) by novel membranes[J]. Membranes, 2022, 12(7): 662. doi: 10.3390/membranes12070662
|
[145] |
BLOTEVOGEL J, THAGARD S M, MAHENDRA S. Scaling up water treatment technologies for PFAS destruction: Current status and potential for fit-for-purpose application[J]. Current Opinion in Chemical Engineering, 2023, 41: 100944. doi: 10.1016/j.coche.2023.100944
|
[146] |
LIU F Q, GUAN X H, XIAO F. Photodegradation of per- and polyfluoroalkyl substances in water: A review of fundamentals and applications[J]. Journal of Hazardous Materials, 2022, 439: 129580. doi: 10.1016/j.jhazmat.2022.129580
|
[147] |
SHIELDS E P, KRUG J D, ROBERSON W R, et al. Pilot-scale thermal destruction of per- and polyfluoroalkyl substances in a legacy aqueous film forming foam[J]. ACS ES& T Engineering, 2023, 3(9): 1308-1317.
|
[148] |
EBRAHIMI F, LEWIS A J, SALES C M, et al. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes[J]. Chemosphere, 2021, 271: 129530. doi: 10.1016/j.chemosphere.2020.129530
|