[1] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review[J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351
[2] LI S M, LI J, LI Z, et al. Toxic effects of norfloxacin in soil on fed and unfed Folsomia candida (Isotomidae: Collembola) and on gut and soil microbiota[J]. The Science of the Total Environment, 2021, 788: 147793. doi: 10.1016/j.scitotenv.2021.147793
[3] ZHANG Q F, ZHANG H, ZHANG Q X, et al. Degradation of norfloxacin in aqueous solution by atmospheric-pressure non-thermal plasma: Mechanism and degradation pathways[J]. Chemosphere, 2018, 210: 433-439. doi: 10.1016/j.chemosphere.2018.07.035
[4] ZHU F, WU Y Y, LIANG Y K, et al. Degradation mechanism of norfloxacin in water using persulfate activated by BC@nZVI/Ni[J]. Chemical Engineering Journal, 2020, 389: 124276. doi: 10.1016/j.cej.2020.124276
[5] GHOSH S, KAR S, PAL T, et al. Sunlight-driven photocatalytic degradation of Norfloxacin antibiotic in wastewater by ZnSe microsphere functionalized RGO composite[J]. Sustainable Chemistry for the Environment, 2023, 4: 100038. doi: 10.1016/j.scenv.2023.100038
[6] WANG X J, HU S S, MAO H T, et al. Facile fabrication of AgVO3/rGO/BiVO4 hetero junction for efficient degradation and detoxification of norfloxacin[J]. Environmental Research, 2023, 227: 115623. doi: 10.1016/j.envres.2023.115623
[7] FANG C, XU H B, WANG S H, et al. Simultaneous removal of norfloxacin and chloramphenicol using cold atmospheric plasma jet (CAPJ): Enhanced performance, synergistic effect, plasma-activated water (PAW) contribution, mechanism and toxicity evaluation[J]. Journal of Hazardous Materials, 2023, 452: 131306. doi: 10.1016/j.jhazmat.2023.131306
[8] KIM S H, PARK S Y, KIM G E, et al. Effect of pH and temperature on the biodegradation of oxytetracycline, streptomycin, and validamycin A in soil[J]. Applied Biological Chemistry, 2023, 66(1): 63. doi: 10.1186/s13765-023-00822-1
[9] SUMESH C K, PAREKH K. Nanocatalytic physicochemical adsorption and degradation of organic dyes[J]. Pramana, 2019, 92(6): 87. doi: 10.1007/s12043-019-1760-0
[10] WANG C K, LIN C Y, LIAO G Y. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process[J]. Journal of Water Process Engineering, 2020, 37: 101463. doi: 10.1016/j.jwpe.2020.101463
[11] WANG P, ZHANG H X, WU Z H, et al. A data-based review on norfloxacin degradation by persulfate-based advanced oxidation processes: Systematic evaluation and mechanisms[J]. Chinese Chemical Letters, 2023, 34(12): 108722. doi: 10.1016/j.cclet.2023.108722
[12] YUAN Q B, QU S Y, LI R, et al. Degradation of antibiotics by electrochemical advanced oxidation processes (EAOPs): Performance, mechanisms, and perspectives[J]. The Science of the Total Environment, 2023, 856(Pt 2): 159092.
[13] ANJALI R, SHANTHAKUMAR S. Insights on the current status of occurrence and removal of antibiotics in wastewater by advanced oxidation processes[J]. Journal of Environmental Management, 2019, 246: 51-62.
[14] LI S, WU Y N, ZHENG H S, et al. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products[J]. Chemosphere, 2023, 311(Pt 2): 136977.
[15] ZHANG J, LV S Y, YU Q, et al. Degradation of sulfamethoxazole in microbubble ozonation process: Performance, reaction mechanism and toxicity assessment[J]. Separation and Purification Technology, 2023, 311: 123262 doi: 10.1016/j.seppur.2023.123262
[16] LIU T, ZHANG B, LI W Q, et al. The catalytic oxidation process of atrazine by ozone microbubbles: Bubble formation, ozone mass transfer and hydroxyl radical generation[J]. Chemosphere, 2023, 325: 138361. doi: 10.1016/j.chemosphere.2023.138361
[17] VERINDA S B, MUNIROH M, YULIANTO E, et al. Degradation of ciprofloxacin in aqueous solution using ozone microbubbles: Spectroscopic, kinetics, and antibacterial analysis[J]. Heliyon, 2022, 8(8): e10137. doi: 10.1016/j.heliyon.2022.e10137
[18] 杨旭. 微气泡催化臭氧化降解制药废水过程及机制研究[D]. 石家庄: 河北科技大学, 2022. YANG X. Study on the process and mechanism of catalytic ozonation of microbubbles in degradation of pharmaceutical wastewater[D]. Shijiazhuang: Hebei University of Science and Technology, 2022 (in Chinese).
[19] ZHANG J, LIU M, PANG B W, et al. Ciprofloxacin degradation in microbubble ozonation combined with electro-generated H2O2 process: Operational parameters and oxidation mechanism[J]. Separation and Purification Technology, 2023, 325: 124676 doi: 10.1016/j.seppur.2023.124676
[20] 胡英, 刘洪来. 密度泛函理论[M]. 北京: 科学出版社, 2016. HU Y, LIU H L. Density functional theory[M]. Beijing: Science Press, 2016(in Chinese).
[21] 卢志磊, 范勇杰, 陈洁洁, 等. 基于Gaussian、ECOSAR模型的紫外/次氯酸体系降解含卤阻燃剂的产物预测与毒性评估[J]. 环境化学, 2024, 43(1): 82-91. doi: 10.7524/j.issn.0254-6108.2022063002 LU Z L, FAN Y J, CHEN J J, et al. Product prediction and toxicity assessment of halogen-containing flame retardants degraded by UV/hypochlorous acid systems based on Gaussian and ECOSAR models[J]. Environmental Chemistry, 2024, 43(1): 82-91 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022063002
[22] GUTIÉRREZ-SÁNCHEZ P, ÁLVAREZ-TORRELLAS S, LARRIBA M, et al. Influence of transition metal-based activating agent on the properties and catalytic activity of sewage sludge-derived catalysts. Insights on mechanism, DFT calculation and degradation pathways[J]. Journal of Molecular Liquids, 2023, 381: 121840. doi: 10.1016/j.molliq.2023.121840
[23] YEOM Y, HAN J R, ZHANG X R, et al. A review on the degradation efficiency, DBP formation, and toxicity variation in the UV/chlorine treatment of micropollutants[J]. Chemical Engineering Journal, 2021, 424: 130053. doi: 10.1016/j.cej.2021.130053
[24] 陈洁洁, 范勇杰, 杨婧, 等. 基于Guassian、Multiwfn及ECOSAR的氮磷系阻燃剂在UV/PDS体系中的降解路径及产物毒性预测研究[J]. 环境科学学报, 2022, 42(12): 39-48. CHEN J J, FAN Y J, YANG J, et al. Degradation pathway and product toxicity prediction of nitrogen phosphorus flame retardants in UV/PDS system based on Guassian, Multiwfn and ECOSAR[J]. Acta Scientiae Circumstantiae, 2022, 42(12): 39-48 (in Chinese).
[25] MARENICH A V, CRAMER C J, TRUHLAR D G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions[J]. The Journal of Physical Chemistry. B, 2009, 113(18): 6378-6396. doi: 10.1021/jp810292n
[26] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 16 Rev. C. 01[CP/OL].
[27] LU T, CHEN F W. Bond order analysis based on the Laplacian of electron density in fuzzy overlap space[J]. The Journal of Physical Chemistry. A, 2013, 117(14): 3100-3108. doi: 10.1021/jp4010345
[28] LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. doi: 10.1002/jcc.22885
[29] ALAM M S, LEE D U. Molecular structure, spectral (FT-IR, FT-Raman, Uv-Vis, and fluorescent) properties and quantum chemical analyses of azomethine derivative of 4-aminoantipyrine[J]. Journal of Molecular Structure, 2021, 1227: 129512. doi: 10.1016/j.molstruc.2020.129512
[30] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38,27-28. doi: 10.1016/0263-7855(96)00018-5
[31] GEERLINGS P, de PROFT F, LANGENAEKER W. Conceptual density functional theory[J]. Chemical Reviews, 2003, 103(5): 1793-1873. doi: 10.1021/cr990029p
[32] FENG X F, LONG R X, LIU C C, et al. Flexible Z-scheme heterojunction membrane reactors for visible-light-driven antibiotic degradation and oil-water separation[J]. Chemical Engineering Journal, 2023, 471: 144447. doi: 10.1016/j.cej.2023.144447
[33] LYKOS C, KOURKOUTA T, KONSTANTINOU I. Study on the photocatalytic degradation of metronidazole antibiotic in aqueous media with TiO2 under lab and pilot scale[J]. The Science of the Total Environment, 2023, 870: 161877. doi: 10.1016/j.scitotenv.2023.161877
[34] 王福生, 孙玮, 张渝, 等. 过渡金属离子促进煤自燃机理的量子化学计算[J]. 煤炭学报, 2024, 49(5) : 2347-2359. WANG F S, SUN W, ZHANG Y, et al. Quantum chemical calculation of transition metal ions promoting coal spontaneous combustion mechanism[J]. Journal of China Coal Society, 2024, 49(5) : 2347-2359 (in Chinese).
[35] PARLAK C, ALVER Ö. A density functional theory investigation on amantadine drug interaction with pristine and B, Al, Si, Ga, Ge doped C60 fullerenes[J]. Chemical Physics Letters, 2017, 678: 85-90. doi: 10.1016/j.cplett.2017.04.025
[36] KURBAN M, MUZ İ. Theoretical investigation of the adsorption behaviors of fluorouracil as an anticancer drug on pristine and B-, Al-, Ga-doped C36 nanotube[J]. Journal of Molecular Liquids, 2020, 309: 113209. doi: 10.1016/j.molliq.2020.113209
[37] 付蓉, 卢天, 陈飞武. 亲电取代反应中活性位点预测方法的比较[J]. 物理化学学报, 2014, 30(4): 628-639. doi: 10.3866/PKU.WHXB201401211 FU R, LU T, CHEN F W. Comparing methods for predicting the reactive site of electrophilic substitution[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 628-639 (in Chinese). doi: 10.3866/PKU.WHXB201401211
[38] WU Y H, LI Y L, HE J Y, et al. Nano-hybrids of needle-like MnO2 on graphene oxide coupled with peroxymonosulfate for enhanced degradation of norfloxacin: A comparative study and probable degradation pathway[J]. Journal of Colloid and Interface Science, 2020, 562: 1-11. doi: 10.1016/j.jcis.2019.11.121
[39] DENG J, XU M Y, CHEN Y J, et al. Highly-efficient removal of norfloxacin with nanoscale zero-valent copper activated persulfate at mild temperature[J]. Chemical Engineering Journal, 2019, 366: 491-503. doi: 10.1016/j.cej.2019.02.073
[40] XUE L, ZHAO C X, LIU J M, et al. Microwave electrodeless UV light source combine ozone generation with photocatalytic simultaneous degradation of norfloxacin[J]. Chemical Engineering and Processing - Process Intensification, 2023, 186: 109325. doi: 10.1016/j.cep.2023.109325
[41] XU Z M, XUE X J, HU S H, et al. Degradation effect and mechanism of gas-liquid phase dielectric barrier discharge on norfloxacin combined with H2O2 or Fe2+[J]. Separation and Purification Technology, 2020, 230: 115862. doi: 10.1016/j.seppur.2019.115862
[42] ZHAO Y P, SUN Q, ZHANG J, et al. Construction of Fe/N/C nano-clusters anchored on porous diatomite for efficient removal of norfloxacin via the adsorption-PMS activation[J]. Separation and Purification Technology, 2023, 310: 123127. doi: 10.1016/j.seppur.2023.123127
[43] ZHOU Y, HE J, LU J, et al. Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems: Degradation intermediates and toxicity evaluation[J]. Chinese Chemical Letters, 2020, 31(10): 2623-2626. doi: 10.1016/j.cclet.2020.02.008
[44] LIU H Y, CHEN H J, ADDISON F, et al. Insights into electrocatalytic oxidation of aqueous ampicillin: Degradation mechanism and potential toxicity from intermediates[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108673. doi: 10.1016/j.jece.2022.108673
[45] YANG J X, LV G C, LI T T, et al. Theoretical insight into the degradation of diclofenac by hydroxyl and sulfate radicals in aqueous-phase: Mechanisms, kinetics and eco-toxicity[J]. Journal of Environmental Chemical Engineering, 2022, 10(5): 108311. doi: 10.1016/j.jece.2022.108311
[46] HE B, SONG L X, ZHAO Z X, et al. CuFe2O4/CuO magnetic nano-composite activates PMS to remove ciprofloxacin: Ecotoxicity and DFT calculation[J]. Chemical Engineering Journal, 2022, 446: 137183. doi: 10.1016/j.cej.2022.137183