[1] |
WANG S, CHEN J, TER-MIKAELIAN M T, et al. From carbon neutral to climate neutral: Dynamic life cycle assessment for wood-based panels produced in China[J]. Journal of Industrial Ecology, 2022, 26(4): 1437-1449. doi: 10.1111/jiec.13286
|
[2] |
WANG W, ZHANG Y. Analysis of Cities Participating in Global Climate Governance in the Trend of Carbon Neutrality[J]. Journal of Global Energy Interconnection, 2022, 5(1): 97-104.
|
[3] |
陈彬, 杨维思. 产业园区碳排放核算方法研究[J]. 中国人口·资源与环境, 2017, 27(3): 1-10.
|
[4] |
田慧芳. 碳中和背景下中欧气候合作的潜力与挑战[J]. 欧亚经济, 2022(5): 78-101+126.
|
[5] |
张文闻. 碳中和背景下的日本"绿色增长战略"及其借鉴研究[J]. 现代日本经济, 2023, 42(3): 50-65.
|
[6] |
ZENG G, GUO H, GENG C. Mechanism analysis of influencing factors on financing efficiency of strategic emerging industries under the "dual carbon" background: Evidence from China[J]. Environmental Science and Pollution Research, 2023, 30(4): 10079-10098.
|
[7] |
HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. doi: 10.1038/s41586-019-1681-6
|
[8] |
薛成杰, 方战强. 土壤修复产业碳达峰碳中和路径研究[J]. 环境工程, 2022, 40(8): 231-238.
|
[9] |
姜文超. 污染场地热脱附技术的绿色低碳评价与措施研究[J]. 环境污染与防治, 2023, 45(8): 1189-1194.
|
[10] |
孟豪, 董璟琦, 张红振, 等. 污染场地风险管控碳排放计算方法及案例分析[J]. 中国环境科学, 2023: 1-10.
|
[11] |
沈曙华. 大型污染场地土壤修复技术应用实践及优化设计——以上海某污染场地修复工程为例[J]. 上海化工, 2023, 48(2): 38-41. doi: 10.3969/j.issn.1004-017X.2023.02.024
|
[12] |
张海静, 姜文超, 殷瑶, 等. 土壤修复的热脱附技术特征尾气模块化处理工艺研究进展[J]. 环境污染与防治, 2022, 44(3): 386-391.
|
[13] |
严志楼, 王昶童, 张施阳. 碱活化过硫酸钠和热脱附技术对TPH和PAHs污染土壤修复的试验研究[J]. 化工管理, 2022(12): 49-53.
|
[14] |
徐停. 组合技术修复某焦化厂不同浓度苯并(a)芘污染土壤的应用案例[J]. 山东化工, 2023, 52(9): 245-247. doi: 10.3969/j.issn.1008-021X.2023.09.071
|
[15] |
周实际, 孙慧洋, 李颖臻, 等. 污染土壤稳定化碳排放计算方法及案例研究[J]. 中国环境科学, 2022, 42(10): 4840-4848. doi: 10.3969/j.issn.1000-6923.2022.10.042
|
[16] |
吴翠华, 于晓华, 高军政, 等. 典型水泥窑协同处置废弃物的碳排放核算及碳减排分析[J]. 环境工程, 2023, 41(7): 30-36+60.
|
[17] |
杨洁, 叶春梅, 司马菁珂, 等. "双碳"目标下污染场地原位热处理技术发展趋势[J]. 环境工程学报, 2022, 16(11): 3517-3529. doi: 10.12030/j.cjee.202203006
|
[18] |
刘文晓, 夏天翔, 张丽娜, 等. 基于修复效果的污染土壤修复工程环境足迹分析[J]. 环境科学研究, 2022, 35(10): 2367-2377.
|
[19] |
刘爽, 陈盼, 宋慧敏, 等. 我国华东地区污染土壤异位热脱附修复碳排放及减排策略[J]. 环境工程学报, 2022, 16(8): 2663-2671. doi: 10.12030/j.cjee.202203028
|
[20] |
Intergovernmental Panel on Climate Change. IPCC 排放因子数据库EFDB [EB/OL]. [2006-03-03].https://www.ipcc-nggip.iges.or.jp/EFDB/main.php,2006.
|
[21] |
UK Government. UK Government GHG Conversion Factors for Company Reporting[EB/OL]. [2023-06-10]. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023,2023.
|
[22] |
U. S. Environmental Protection Agency. Emission Factors for Greenhouse Gas Inventories[EB/OL]. [2014-04-04]. https://www.epa.gov/climateleadership/ghg-emission-factors-hub,2014.
|
[23] |
European Environmetal Agency. EMEP/EEA air pollutant emission inventory guidebook 2019[EB/OL]. [2019-10-17]. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/emission-factors-database,2019.
|
[24] |
生态环境部环境规划院碳达峰碳中和研究中心. 中国产品全生命周期温室气体排放系数集(2022)[EB/OL]. [2021-12-13]. http://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202201/t20220105_966202.shtml,2022.
|
[25] |
刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34(2): 248-258.
|
[26] |
陈先昌. 基于卷积神经网络的深度学习算法与应用研究[D]. 浙江: 浙江工商大学, 2014.
|
[27] |
黄丽. BP神经网络算法改进及应用研究[D]. 重庆: 重庆师范大学, 2008.
|
[28] |
魏薇. 人工神经网络的可靠性与容错性及其研究方法[J]. 科技导报, 1993(9): 30-33.
|
[29] |
张红兰. 人工神经网络技术的应用现状分析[J]. 中国新通信, 2014, 16(2): 76.
|
[30] |
李青青, 苏颖, 尚丽, 等. 国际典型碳数据库对中国碳排放核算的对比分析[J]. 气候变化研究进展, 2018, 14(3): 275-280.
|
[31] |
郜二刚, 李社红, 吴代赦, 等. 基于发热量的中国煤炭碳含量研究[J]. 地球与环境, 2014, 42(1): 95-101.
|
[32] |
高源. 整合碳排放评价的中国绿色建筑评价体系研究[D]. 天津: 天津大学, 2014.
|
[33] |
陈政, 何耿生, 尚楠. 面向碳达峰碳中和的电网碳排放因子改进计算方法[J]. 南方电网技术, 2023: 1-10.
|
[34] |
李容, 曾永寿, 段成义. 烧碱行业碳排放现状分析及企业碳排放管理[J]. 中国氯碱, 2020(5): 36-39. doi: 10.3969/j.issn.1009-1785.2020.05.013
|
[35] |
余娇, 赵荣钦, 肖连刚, 等. 基于"水—能—碳"关联的城市污水处理系统碳排放研究[J]. 资源科学, 2020, 42(6): 1052-1062. doi: 10.18402/resci.2020.06.04
|
[36] |
SINGH E, KUMAR A, MISHRA R, et al. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution[J]. Bioresource Technology, 2021, 320: 124278. doi: 10.1016/j.biortech.2020.124278
|
[37] |
RYAN N A, MILLER S A, SKERLOS S J, et al. Reducing CO2 emissions from US steel consumption by 70% by 2050[J]. Environmental Science & Technology, 2020, 54(22): 14598-14608.
|
[38] |
CELIK K, MERAL C, GURSEL A P, et al. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder[J]. Cement & Concrete Composites, 2015, 56: 59-72.
|
[39] |
U. S. Environmental Protection Agency. Estimates of global greenhouse gas emissions from industrial and domestic wastewater treatment[EB/OL]. [2014-04-04].https://www.epa.gov/climateleadership/ghg-emission-factors-hub,1997.
|
[40] |
MOLINOS-SENANTE M, MAZIOTIS A, SALA-GARRIDO R, et al. Estimating the cost efficiency and marginal cost of carbon reductions in the production of drinking water[J]. Sustainable Cities and Society, 2022, 85: 104091. doi: 10.1016/j.scs.2022.104091
|
[41] |
FARAGO M, DAMGAARD A, REBSDORF M, et al. Challenges in carbon footprint evaluations of state-of-the-art municipal wastewater resource recovery facilities[J]. Journal of Environmental Management, 2022, 320: 115715. doi: 10.1016/j.jenvman.2022.115715
|
[42] |
VAN EGMOND R, SPARHAM C, HASTIE C, et al. Monitoring and modelling of siloxanes in a sewage treatment plant in the UK[J]. Chemosphere, 2013, 93(5): 757-765. doi: 10.1016/j.chemosphere.2012.10.046
|
[43] |
CAKIR F Y, STENSTROM M K. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology[J]. Water Research, 2005, 39(17): 4197-4203. doi: 10.1016/j.watres.2005.07.042
|
[44] |
郭会云. 污染土壤的修复方法在生态环境保护中的应用[J]. 皮革制作与环保科技, 2023, 4(16): 117-118+121.
|
[45] |
王圣, 庄柯, 徐静馨. 全球绿色电力及我国电力低碳发展分析[J]. 环境保护, 2022, 50(19): 37-41.
|