[1] WANG S, CHEN J, TER-MIKAELIAN M T, et al. From carbon neutral to climate neutral: Dynamic life cycle assessment for wood-based panels produced in China[J]. Journal of Industrial Ecology, 2022, 26(4): 1437-1449. doi: 10.1111/jiec.13286
[2] WANG W, ZHANG Y. Analysis of Cities Participating in Global Climate Governance in the Trend of Carbon Neutrality[J]. Journal of Global Energy Interconnection, 2022, 5(1): 97-104.
[3] 陈彬, 杨维思. 产业园区碳排放核算方法研究[J]. 中国人口·资源与环境, 2017, 27(3): 1-10.
[4] 田慧芳. 碳中和背景下中欧气候合作的潜力与挑战[J]. 欧亚经济, 2022(5): 78-101+126.
[5] 张文闻. 碳中和背景下的日本"绿色增长战略"及其借鉴研究[J]. 现代日本经济, 2023, 42(3): 50-65.
[6] ZENG G, GUO H, GENG C. Mechanism analysis of influencing factors on financing efficiency of strategic emerging industries under the "dual carbon" background: Evidence from China[J]. Environmental Science and Pollution Research, 2023, 30(4): 10079-10098.
[7] HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. doi: 10.1038/s41586-019-1681-6
[8] 薛成杰, 方战强. 土壤修复产业碳达峰碳中和路径研究[J]. 环境工程, 2022, 40(8): 231-238.
[9] 姜文超. 污染场地热脱附技术的绿色低碳评价与措施研究[J]. 环境污染与防治, 2023, 45(8): 1189-1194.
[10] 孟豪, 董璟琦, 张红振, 等. 污染场地风险管控碳排放计算方法及案例分析[J]. 中国环境科学, 2023: 1-10.
[11] 沈曙华. 大型污染场地土壤修复技术应用实践及优化设计——以上海某污染场地修复工程为例[J]. 上海化工, 2023, 48(2): 38-41. doi: 10.3969/j.issn.1004-017X.2023.02.024
[12] 张海静, 姜文超, 殷瑶, 等. 土壤修复的热脱附技术特征尾气模块化处理工艺研究进展[J]. 环境污染与防治, 2022, 44(3): 386-391.
[13] 严志楼, 王昶童, 张施阳. 碱活化过硫酸钠和热脱附技术对TPH和PAHs污染土壤修复的试验研究[J]. 化工管理, 2022(12): 49-53.
[14] 徐停. 组合技术修复某焦化厂不同浓度苯并(a)芘污染土壤的应用案例[J]. 山东化工, 2023, 52(9): 245-247. doi: 10.3969/j.issn.1008-021X.2023.09.071
[15] 周实际, 孙慧洋, 李颖臻, 等. 污染土壤稳定化碳排放计算方法及案例研究[J]. 中国环境科学, 2022, 42(10): 4840-4848. doi: 10.3969/j.issn.1000-6923.2022.10.042
[16] 吴翠华, 于晓华, 高军政, 等. 典型水泥窑协同处置废弃物的碳排放核算及碳减排分析[J]. 环境工程, 2023, 41(7): 30-36+60.
[17] 杨洁, 叶春梅, 司马菁珂, 等. "双碳"目标下污染场地原位热处理技术发展趋势[J]. 环境工程学报, 2022, 16(11): 3517-3529. doi: 10.12030/j.cjee.202203006
[18] 刘文晓, 夏天翔, 张丽娜, 等. 基于修复效果的污染土壤修复工程环境足迹分析[J]. 环境科学研究, 2022, 35(10): 2367-2377.
[19] 刘爽, 陈盼, 宋慧敏, 等. 我国华东地区污染土壤异位热脱附修复碳排放及减排策略[J]. 环境工程学报, 2022, 16(8): 2663-2671. doi: 10.12030/j.cjee.202203028
[20] Intergovernmental Panel on Climate Change. IPCC 排放因子数据库EFDB [EB/OL]. [2006-03-03].https://www.ipcc-nggip.iges.or.jp/EFDB/main.php,2006.
[21] UK Government. UK Government GHG Conversion Factors for Company Reporting[EB/OL]. [2023-06-10]. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2023,2023.
[22] U. S. Environmental Protection Agency. Emission Factors for Greenhouse Gas Inventories[EB/OL]. [2014-04-04]. https://www.epa.gov/climateleadership/ghg-emission-factors-hub,2014.
[23] European Environmetal Agency. EMEP/EEA air pollutant emission inventory guidebook 2019[EB/OL]. [2019-10-17]. https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/emission-factors-database,2019.
[24] 生态环境部环境规划院碳达峰碳中和研究中心. 中国产品全生命周期温室气体排放系数集(2022)[EB/OL]. [2021-12-13]. http://www.caep.org.cn/sy/tdftzhyjzx/zxdt/202201/t20220105_966202.shtml,2022.
[25] 刘明达, 蒙吉军, 刘碧寒. 国内外碳排放核算方法研究进展[J]. 热带地理, 2014, 34(2): 248-258.
[26] 陈先昌. 基于卷积神经网络的深度学习算法与应用研究[D]. 浙江: 浙江工商大学, 2014.
[27] 黄丽. BP神经网络算法改进及应用研究[D]. 重庆: 重庆师范大学, 2008.
[28] 魏薇. 人工神经网络的可靠性与容错性及其研究方法[J]. 科技导报, 1993(9): 30-33.
[29] 张红兰. 人工神经网络技术的应用现状分析[J]. 中国新通信, 2014, 16(2): 76.
[30] 李青青, 苏颖, 尚丽, 等. 国际典型碳数据库对中国碳排放核算的对比分析[J]. 气候变化研究进展, 2018, 14(3): 275-280.
[31] 郜二刚, 李社红, 吴代赦, 等. 基于发热量的中国煤炭碳含量研究[J]. 地球与环境, 2014, 42(1): 95-101.
[32] 高源. 整合碳排放评价的中国绿色建筑评价体系研究[D]. 天津: 天津大学, 2014.
[33] 陈政, 何耿生, 尚楠. 面向碳达峰碳中和的电网碳排放因子改进计算方法[J]. 南方电网技术, 2023: 1-10.
[34] 李容, 曾永寿, 段成义. 烧碱行业碳排放现状分析及企业碳排放管理[J]. 中国氯碱, 2020(5): 36-39. doi: 10.3969/j.issn.1009-1785.2020.05.013
[35] 余娇, 赵荣钦, 肖连刚, 等. 基于"水—能—碳"关联的城市污水处理系统碳排放研究[J]. 资源科学, 2020, 42(6): 1052-1062. doi: 10.18402/resci.2020.06.04
[36] SINGH E, KUMAR A, MISHRA R, et al. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution[J]. Bioresource Technology, 2021, 320: 124278. doi: 10.1016/j.biortech.2020.124278
[37] RYAN N A, MILLER S A, SKERLOS S J, et al. Reducing CO2 emissions from US steel consumption by 70% by 2050[J]. Environmental Science & Technology, 2020, 54(22): 14598-14608.
[38] CELIK K, MERAL C, GURSEL A P, et al. Mechanical properties, durability, and life-cycle assessment of self-consolidating concrete mixtures made with blended portland cements containing fly ash and limestone powder[J]. Cement & Concrete Composites, 2015, 56: 59-72.
[39] U. S. Environmental Protection Agency. Estimates of global greenhouse gas emissions from industrial and domestic wastewater treatment[EB/OL]. [2014-04-04].https://www.epa.gov/climateleadership/ghg-emission-factors-hub,1997.
[40] MOLINOS-SENANTE M, MAZIOTIS A, SALA-GARRIDO R, et al. Estimating the cost efficiency and marginal cost of carbon reductions in the production of drinking water[J]. Sustainable Cities and Society, 2022, 85: 104091. doi: 10.1016/j.scs.2022.104091
[41] FARAGO M, DAMGAARD A, REBSDORF M, et al. Challenges in carbon footprint evaluations of state-of-the-art municipal wastewater resource recovery facilities[J]. Journal of Environmental Management, 2022, 320: 115715. doi: 10.1016/j.jenvman.2022.115715
[42] VAN EGMOND R, SPARHAM C, HASTIE C, et al. Monitoring and modelling of siloxanes in a sewage treatment plant in the UK[J]. Chemosphere, 2013, 93(5): 757-765. doi: 10.1016/j.chemosphere.2012.10.046
[43] CAKIR F Y, STENSTROM M K. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology[J]. Water Research, 2005, 39(17): 4197-4203. doi: 10.1016/j.watres.2005.07.042
[44] 郭会云. 污染土壤的修复方法在生态环境保护中的应用[J]. 皮革制作与环保科技, 2023, 4(16): 117-118+121.
[45] 王圣, 庄柯, 徐静馨. 全球绿色电力及我国电力低碳发展分析[J]. 环境保护, 2022, 50(19): 37-41.