[1] SALES I G, GOMES F C, PADILHA N M, et al. Soil bioremediation: Overview of technologies and trends[J]. Energies, 2020, 13(18): 4664.
[2] TAKEUCHI M, KAWABE Y, WATANABE E, et al. Comparative study of microbial dechlorination of chlorinated ethenes in an aquifer and a clayey aquitard. Journal of contaminant hydrology[J]. 2011, 124(1-4): 14-24.
[3] ISMAIL S, DADRASNIA A. Biotechnological potential of Bacillus salmalaya 139SI: a novel strain for remediating water polluted with crude oil waste[J]. PLoS ONE, 2015, 10(4): e0120931.
[4] SCOW K M. Soil microbial communities and carbon flow in Agroecosystems[J]. Ecology in agriculture, 1997, 367.
[5] MANOLI G, CHAMBON J C, BJERG P L, et al. A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till[J]. Journal of contaminant hydrology, 2012, 131(1-4): 64-78.
[6] SINGH R, OLSON M S. Application of bacterial swimming and chemotaxis for enhanced bioremediation[M]. Emerging Environmental Technologies, 2008, 149-172.
[7] BAI H, CHEN J, HU Y, et al. Biocolloid transport and deposition in porous media: A review[J]. Korean Journal of Chemical Engineering, 2022, 39(1): 38-57.
[8] 黄斯艺, 何江涛, 劳天颖, 等. 纳米乳化油修复硝酸盐污染地下水过程中的微生物特征模拟实验研究[J]. 环境科学学报, 2020, 40(4): 1242-1249.
[9] TAN Y, GANNON J T, BAVEYE P, ALEXANDER M. Transport of bacteria in an aquifer sand: Experiments and model simulations[J]. Water Resources Research, 1994, 30(12): 3243-3252.
[10] MCKAY L D, CHERRY J A, BALES R C, et al. A field example of bacteriophage as tracers of fracture flow[J]. Environmental Science & Technology, 1993, 27(6): 1075-1079.
[11] FRAGKOU E, ANTONIOU E, DALIAKOPOULOS I, et al. In situ aerobic bioremediation of sediments polluted with petroleum hydrocarbons: a critical review[J]. Journal of Marine Science and Engineering, 2021, 9(9): 1003.
[12] 刚洪泽, 刘金峰, 牟伯中. 多孔介质中微生物生长行为和传输过程的数学模型研究进展[J]. 化学与生物工程, 2009, 26(4): 1-6. doi: 10.3969/j.issn.1672-5425.2009.04.001
[13] CHEN H, FENG S J, ZHENG Q T, et al. Enhanced delivery of amendments in fractured clay sites based on multi-point injection: An analytical study[J]. Chemosphere, 2022, 297: 134086.
[14] 毕永强, 俞理, 修建龙, 等. 采油微生物在多孔介质中的迁移滞留机制[J]. 石油学报, 2017, 38(1): 91. doi: 10.7623/syxb201701010
[15] GREER K D, MOLSON J W, BARKER J F, et al. High-pressure injection of dissolved oxygen for hydrocarbon remediation in a fractured dolostone aquifer[J]. Journal of Contaminant Hydrology, 2010, 118(1-2): 13-26.
[16] CORAPCIOGLU M Y, HARIDAS A. Microbial transport in soils and groundwater: A numerical model[J]. Advances in Water Resources, 1985, 8(4): 188-200.
[17] BAI H, COCHET N, DRELICH A, et al. Comparison of transport between two bacteria in saturated porous media with distinct pore size distribution[J]. RSC Advances, 2016, 6(18): 14602-14614.
[18] HENDRY M J, LAWRENCE J R, MALOSZEWSKI P. Effects of velocity on the transport of two bacteria through saturated sand[J]. Groundwater, 1999, 37(1): 103-112.
[19] WANG S, CORAPCIOGLU M Y. Simulation of bioaugmentation involving exogenous bacteria injection[J]. Water Resources Research, 2002, 38(12): 29-1-29-14.
[20] PHANIKUMAR M S, HYNDMAN D W, WIGGERT D C, et al. Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns[J]. Water Resources Research, 2002, 38(4): 4-1-4-13.
[21] SCHIJVEN J F, HASSANIZADEH S M. Removal of viruses by soil passage: Overview of modeling, processes, and parameters[J]. Critical Reviews in Environmental Science and Technology, 2000, 30(1): 49-127.