[1] LAN R, IRVINE J T S, TAO S W. Ammonia and related chemicals as potential indirect hydrogen storage materials[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1482-1494.
[2] RAGNARSSON U. Synthetic methodology for alkyl substituted hydrazines[J]. Chemical Society Reviews, 2001, 30(4): 205-213.
[3] GARROD S, BOLLARD M E, NICHOLLS A W, et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat[J]. Chemical Research in Toxicology, 2005, 18(2): 115-122.
[4] NGUYEN H N, CHENOWETH J A, BEBARTA V S, et al. The toxicity, pathophysiology, and treatment of acute hydrazine propellant exposure: A systematic review[J]. Military Medicine, 2021, 186(3/4): e319-e326.
[5] MU S, GAO H, LI C, et al. A dual-response fluorescent probe for detection and bioimaging of hydrazine and cyanide with different fluorescence signals[J]. Talanta, 2021, 221: 121606.
[6] MA J H, FAN J L, LI H D, et al. Probing hydrazine with a near-infrared fluorescent chemodosimeter[J]. Dyes and Pigments, 2017, 138: 39-46.
[7] Health standard for hydrazine in source water. National standard of the People’s Republic of China. GB 18061-2000[S]. Beijing: China Standard Press, 2000: 4-10.
[8] Environmental quality standards for surface water. National standard of the People’s Republic of China. GB 3838-2002[S]. Beijing: China Standard Press, 2002: 4-26.
[9] RADUSHEV A V, CHEKANOVA L G, GUSEV V Y, et al. Determination of hydrazides and 1, 2-diacylhydrazines of aliphatic carboxylic acids by conductometric titration[J]. Journal of Analytical Chemistry, 2000, 55(5): 445-448.
[10] PINTER J S, BROWN K L, DeYOUNG P A, et al. Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes[J]. Talanta, 2007, 71(3): 1219-1225.
[11] WANG C, ZHANG L, GUO Z H, et al. A novel hydrazine electrochemical sensor based on the high specific surface area graphene[J]. Microchimica Acta, 2010, 169(1): 1-6.
[12] ELIAS G, BAUER W F. Hydrazine determination in sludge samples by high-performance liquid chromatography[J]. Journal of Separation Science, 2006, 29(3): 460-464.
[13] CHOI M G, HWANG J, MOON J O, et al. Hydrazine-selective chromogenic and fluorogenic probe based on levulinated coumarin[J]. Organic Letters, 2011, 13(19): 5260-5263.
[14] TIENSOMJITR K, NOORAT R, CHOMNGAM S, et al. A chromogenic and fluorogenic rhodol-based chemosensor for hydrazine detection and its application in live cell bioimaging[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 195: 136-141.
[15] WU J J, PAN J, YE Z, et al. A smart fluorescent probe for discriminative detection of hydrazine and bisulfite from different emission channels[J]. Sensors and Actuators B: Chemical, 2018, 274: 274-284.
[16] ZHANG Y B, HUANG Y F, YUE Y K, et al. A compact fluorescent probe based on o-phthalaldehyde for ultrasensitive detection of hydrazine in gas and solution phases[J]. Sensors and Actuators B: Chemical, 2018, 273: 944-950.
[17] YU G Q, CAO Y P, LIU H M, et al. A spirobenzopyran-based multifunctional chemosensor for the chromogenic sensing of Cu2+ and fluorescent sensing of hydrazine with practical applications[J]. Sensors and Actuators B: Chemical, 2017, 245: 803-814.
[18] SK M, KHAN M R U Z, DAS A, et al. A phthalimide-functionalized UiO-66 metal-organic framework for the fluorogenic detection of hydrazine in live cells[J]. Dalton Transactions, 2019, 48(33): 12615-12621.
[19] NABEEL F, RASHEED T. Rhodol-conjugated polymersome sensor for visual and highly-sensitive detection of hydrazine in aqueous media[J]. Journal of Hazardous Materials, 2020, 388: 121757.
[20] ZHAO Z L, ZHANG G, GAO Y, et al. A novel detection technique of hydrazine hydrate: Modality change of hydrogen bonding-induced rapid and ultrasensitive colorimetric assay[J]. Chemical Communications, 2011, 47(48): 12816-12818.
[21] GU X, CAMDEN J P. Surface-enhanced Raman spectroscopy-based approach for ultrasensitive and selective detection of hydrazine[J]. Analytical Chemistry, 2015, 87(13): 6460-6464.
[22] PUROHIT D, SHARMA C P, RAGHUVANSHI A, et al. First dual responsive “turn-on” and “ratiometric” AIEgen probe for selective detection of hydrazine both in solution and the vapour phase[J]. Chemistry, 2019, 25(18): 4660-4664.
[23] ZHANG X Y, YANG Y S, WANG W, et al. Fluorescent sensors for the detection of hydrazine in environmental and biological systems: Recent advances and future prospects[J]. Coordination Chemistry Reviews, 2020, 417: 213367.
[24] 曾碧涛, 钟学芳, 赵志刚, 等. 基于黄酮醇的新型荧光探针的合成及应用研究[J]. 现代化工, 2023, 43(10): 251-256. ZENG B T, ZHONG X F, ZHAO Z G, et al. Synthesis and application of novel fluorescent probes based on flavonol[J]. Modern Chemical Industry, 2023, 43(10): 251-256 (in Chinese).
[25] 周思仪, 丁旭, 赵永梅, 等. 基于黄酮的长波长荧光探针用于检测体外和体内生物硫醇[J]. 有机化学, 2023, 43(1): 178-185. ZHOU S Y, DING X, ZHAO Y M, et al. A Flavone-Based Long-Wavelength Fluorescent Probe to Detect Biothiols in vitro and in vivo[J]. Chinese Journal of Organic Chemistry, 2023, 43(1): 178-185(in Chinese).
[26] 曹小燕, 路宏朝, 张强, 等. 基于黄酮醇类半胱氨酸荧光探针的设计、合成及性能研究[J]. 分析化学, 2020, 48(8): 1033-1049. CAO X Y, LU H Z, ZHANG Q, et al. Design and synthesis of flavone-based fluorescent probe for cysteine detection and its application in living cells imaging[J]. Chinese Journal of Analytical Chemistry, 2020, 48(8): 1033-1049 (in Chinese).
[27] LI K, XU H R, YU K K, et al. A coumarin-based chromogenic and ratiometric probe for hydrazine[J]. Analytical Methods, 2013, 5(11): 2653-2656.
[28] QIAN Y, LIN J, HAN L J, et al. A resorufin-based colorimetric and fluorescent probe for live-cell monitoring of hydrazine[J]. Biosensors and Bioelectronics, 2014, 58: 282-286.
[29] LI B, HE Z S, ZHOU H X, et al. Reaction based colorimetric and fluorescence probes for selective detection of hydrazine[J]. Dyes and Pigments, 2017, 146: 300-304.
[30] ZHENG X X, WANG S Q, WANG H Y, et al. Novel pyrazoline-based selective fluorescent probe for the detection of hydrazine[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 138: 247-251.
[31] TIAN M G, SUN J, TANG Y H, et al. Discriminating live and dead cells in dual-color mode with a two-photon fluorescent probe based on ESIPT mechanism[J]. Analytical Chemistry, 2018, 90(1): 998-1005.
[32] 郝伟, 李丽, 张京, 等. 地下水中砷和汞的不同测试方法[J]. 环境化学, 2024, 43(2): 689-692. HAO W, LI L, ZHANG J, et al. Study on different test methods of arsenic and mercury in groundwater[J]. Environmental Chemistry, 2024, 43(2): 689-692 (in Chinese).
[33] 熊力, 王金成, 陈吉平. 超分子溶剂微萃取-高效液相色谱法快速测定土壤中氯代多环芳烃及多环芳烃[J]. 环境化学, 2022, 41(10): 3159-3166. doi: 10.7524/j.issn.0254-6108.2021060103 XIONG L, WANG J C, CHEN J P. Rapid determination of chlorinated polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbons in soil by supramolecular solvent microextraction-high performance liquid chromatography[J]. Environmental Chemistry, 2022, 41(10): 3159-3166(in Chinese). doi: 10.7524/j.issn.0254-6108.2021060103