[1] AKTAR M W, PARAMASIVAM M, SENGUPTA D, et al. Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal[J]. Environmental Monitoring and Assessment, 2009, 157(1): 97-104.
[2] 吕露, 吴声敢, 徐明飞, 等. 葡萄常用5种杀虫剂对典型陆生生物影响的初级风险评估[J]. 生态毒理学报, 2022, 17(3): 222-234. LV L, WU S G, XU M F, et al. Primary risk assessment of five common insecticides for grapes to typical terrestrial organisms[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 222-234 (in Chinese).
[3] RAI P, SAHA D. Variation of major insecticide detoxifying enzymes’ activity in Culex quinquefasciatus from northern West Bengal, India[J]. International Journal of Tropical Insect Science, 2022, 42(3): 2403-2411. doi: 10.1007/s42690-022-00768-9
[4] 李勃, 马瑜, 张育辉. 有机磷类杀虫剂对非靶标水生动物的毒性机制研究进展[J]. 农药学学报, 2016, 18(4): 407-415. LI B, MA Y, ZHANG Y H. Review on toxic mechanisms of organophosphate insecticides towards non-target aquatilia[J]. Chinese Journal of Pesticide Science, 2016, 18(4): 407-415 (in Chinese).
[5] ZHANG Y Q, WU W K, ZHU X D, et al. Organophosphorus insecticides exposure and sex hormones in general U. S. population: A cross-sectional study[J]. Environmental Research, 2022, 215(Pt 2): 114384.
[6] HUSSAIN A, PU H B, SUN D W. Cysteamine modified core-shell nanoparticles for rapid assessment of oxamyl and thiacloprid pesticides in milk using SERS[J]. Journal of Food Measurement and Characterization, 2020, 14(4): 2021-2029. doi: 10.1007/s11694-020-00448-7
[7] GUARDA P M, PONTES A M S, de S DOMICIANO R, et al. Determination of carbamates and thiocarbamates in water, soil and sediment of the Formoso River, TO, Brazil[J]. Chemistry & Biodiversity, 2020, 17(4): e1900717.
[8] PAUL I E, KUMAR D N, RAJESHWARI A, et al. Detection of food contaminants by gold and silver nanoparticles[M]//Nanobiosensors. Amsterdam: Elsevier, 2017: 129-165.
[9] AN G, HONG T, PARK H, et al. Oxamyl exerts developmental toxic effects in zebrafish by disrupting the mitochondrial electron transport chain and modulating PI3K/Akt and p38 Mapk signaling[J]. The Science of the Total Environment, 2023, 859(Pt 2): 160458.
[10] GONÇALVES C R, MARINS A T, DO AMARAL A M B, et al. Biochemical responses in freshwater fish exposed to insecticide propoxur[J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(4): 524-528. doi: 10.1007/s00128-018-2285-9
[11] FENG L J, SHI Y, LI X Y, et al. Behavior of tetracycline and polystyrene nanoparticles in estuaries and their joint toxicity on marine microalgae Skeletonema costatum[J]. Environmental Pollution, 2020, 263: 114453. doi: 10.1016/j.envpol.2020.114453
[12] 张小旭, 马陶武, 李金曼, 等. 3种氟喹诺酮联合暴露对铜锈环棱螺的急性致死效应[J]. 生态毒理学报, 2022, 17(6): 357-364. ZHANG X X, MA T W, LI J M, et al. Acute lethal effects of combined exposure to 3 fluoroquinolones on Bellamya aeruginosa[J]. Asian Journal of Ecotoxicology, 2022, 17(6): 357-364 (in Chinese).
[13] 张鹏, 陈澄宇, 李慧, 等. 七种新烟碱类杀虫剂对韭菜迟眼蕈蚊幼虫及蚯蚓的选择毒力[J]. 植物保护学报, 2014, 41(1): 79-86. ZHANG P, CHEN C Y, LI H, et al. Selective toxicity of seven neonicotinoid insecticides to fungus gnat Bradysia odoriphaga and earthworm Eisenia foetida[J]. Journal of Plant Protection, 2014, 41(1): 79-86 (in Chinese).
[14] DENG Y, ZHANG W J, QIN Y N, et al. Stereoselective toxicity of metconazole to the antioxidant defenses and the photosynthesis system of Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 210: 129-138. doi: 10.1016/j.aquatox.2019.02.017
[15] 卞志强, 张瑾, 王滔, 等. 氨基甲酸酯类农药对蛋白核小球藻联合毒性作用特点及机制[J]. 生态毒理学报, 2019, 14(4): 150-162. BIAN Z Q, ZHANG J, WANG T, et al. Time-dependent joint toxicity characteristics and mechanisms of five carbamate pesticides towards Chlorella pyrenoidosa[J]. Asian Journal of Ecotoxicology, 2019, 14(4): 150-162 (in Chinese).
[16] HUND-RINKE K, SINRAM T, SCHLICH K, et al. Attachment efficiency of nanomaterials to algae as an important criterion for ecotoxicity and grouping[J]. Nanomaterials, 2020, 10(6): 1021. doi: 10.3390/nano10061021
[17] 马添翼, 张瑾, 周娜娜, 等. 两种除草剂与两种杀虫剂对蛋白核小球藻的联合毒性作用评估[J]. 环境化学, 2022, 41(7): 2221-2233. MA T Y, ZHANG J, ZHOU N N, et al. Evaluation of joint toxicity of two herbicides and two insecticides on Chlorella pyrenoidosa[J]. Environmental Chemistry, 2022, 41(7): 2221-2233 (in Chinese).
[18] WANG L J, LIU S S, YUAN J, et al. Remarkable hormesis induced by 1-ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp. -Q67[J]. Chemosphere, 2011, 84(10): 1440-1445.
[19] 刘树深. 化学混合物毒性评估与预测方法[M]. 北京: 科学出版社, 2017: 57-68. LIU S S. Assessment and prediction of toxicity of chemical mixtures[M]. Beijing: Science Press, 2017: 57-68(in Chinese).
[20] 班龙科. 部分重金属和农药对蛋白核小球藻联合毒性作用时间特征及机制初探[D]. 合肥: 安徽建筑大学, 2018. BAN L K. Trial on the time characteristics and mechanism of joint toxicity of some heavy metals and pesticides to Chlorella pyrenoidosa[D]. Hefei: Anhui Jianzhu University, 2018 (in Chinese).
[21] DOU R N, LIU S S, MO L Y, et al. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos[J]. Environmental Science and Pollution Research, 2011, 18(5): 734-742. doi: 10.1007/s11356-010-0419-7
[22] LIU S S, XIAO Q F, ZHANG J, et al. Uniform design ray in the assessment of combined toxicities of multi-component mixtures[J]. Science Bulletin, 2016, 61(1): 52-58. doi: 10.1007/s11434-015-0925-6
[23] QU R, LIU S S, CHEN F, et al. Complex toxicological interaction between ionic liquids and pesticides to Vibrio qinghaiensis sp. -Q67[J]. RSC Advances, 2016, 6(25): 21012-21018.
[24] LIU L, LIU S S, YU M, et al. Application of the combination index integrated with confidence intervals to study the toxicological interactions of antibiotics and pesticides in Vibrio qinghaiensis sp. -Q67[J]. Environmental Toxicology and Pharmacology, 2015, 39(1): 447-456.
[25] 张瑾, 董欣琪, 陈敏, 等. 五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点[J]. 生态毒理学报, 2017, 12(4): 138-145. ZHANG J, DONG X Q, CHEN M, et al. Toxicity characterstics of five-carbamate pesticide mixture system towards Vibrio qinghaiensis sp. Q67[J]. Asian Journal of Ecotoxicology, 2017, 12(4): 138-145 (in Chinese).
[26] ZHANG J, DING T T, DONG X Q, et al. Time-dependent and Pb-dependent antagonism and synergism towards Vibrio qinghaiensis sp. -Q67 within heavy metal mixtures[J]. RSC Advances, 2018, 8(46): 26089-26098.
[27] ZHANG J, TAO M T, SONG C C, et al. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis sp. -Q67 induced by a key component[J]. RSC Advances, 2020, 10(21): 12365-12372.
[28] 李旭冉, 梅鹏蔚, 王琳, 等. 丙酮萃取分光光度法测定水中叶绿素a实验条件的优化[J]. 环境监控与预警, 2016, 8(3): 25-27,42. LI X R, MEI P W, WANG L, et al. Optimization of the experimental parameters in the determination of chlorophyll-a in water using acetone extraction spectrophotometry[J]. Environmental Monitoring and Forewarning, 2016, 8(3): 25-27,42 (in Chinese).
[29] 张静, 张瑾, 宋崇崇, 等. 3种四环素类抗生素对绿藻联合毒性作用评估[J]. 环境科学与技术, 2023, 46(4): 1-10. ZHANG J, ZHANG J, SONG C C, et al. Assessment of the combined toxic effects of three tetracycline antibiotics on green algae[J]. Environmental Science & Technology, 2023, 46(4): 1-10 (in Chinese).
[30] 曾健平, 张瑾, 朱曙光, 等. 抗生素与中药对大肠杆菌的联合抑菌作用及机理[J]. 环境化学, 2023, 42(5): 1727-1741. doi: 10.7524/j.issn.0254-6108.2022102002 ZENG J P, ZHANG J, ZHU S G, et al. Combined antibacterial action and mechanism of antibiotics and traditional Chinese medicine on Escherichia coli[J]. Environmental Chemistry, 2023, 42(5): 1727-1741 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022102002
[31] 刘敏. 基于生化和分子指标评价莠去津对蛋白核小球藻的毒性效应[D]. 南京: 南京大学, 2014. LIU M. Toxic effect assessment of atrazine on Chlorella pyrenoidosa using biochemical and molecular biomarkers[D]. Nanjing: Nanjing University, 2014 (in Chinese).
[32] SALMAN J. Effect of pesticide Glyphosate on some biochemical features in cyanophyta algae Oscillatoria limnetica[J]. International Journal of Pharm Tech Research, 2016, 9: 355-365. doi: 10.5958/0974-360X.2016.00063.9
[33] 宋崇崇, 陶梦婷, 张瑾, 等. 3种重金属对蛋白核小球藻的联合毒性及机理[J]. 环境科学与技术, 2020, 43(2): 88-95. SONG C C, TAO M T, ZHANG J, et al. Combined toxicity and the mechanisms of three heavy metals to Chlorella pyrenoidosa[J]. Environmental Science & Technology, 2020, 43(2): 88-95 (in Chinese).
[34] 姜恒, 吴斌, 阎冰, 等. 微藻叶绿素荧光技术在环境监测中的应用[J]. 环境工程技术学报, 2012, 2(2): 172-178. JIANG H, WU B, YAN B, et al. Application of microalgae chlorophyll fluorescence technique in environment monitoring[J]. Journal of Environmental Engineering Technology, 2012, 2(2): 172-178 (in Chinese).
[35] ISMAIEL M M S, SAID A A. Tolerance of Pseudochlorella pringsheimii to Cd and Pb stress: Role of antioxidants and biochemical contents in metal detoxification[J]. Ecotoxicology and Environmental Safety, 2018, 164: 704-712. doi: 10.1016/j.ecoenv.2018.08.088
[36] AJITHA V, SREEVIDYA C P, KIM J H, et al. Effect of metals of treated electroplating industrial effluents on antioxidant defense system in the microalga Chlorella vulgaris[J]. Aquatic Toxicology, 2019, 217: 105317. doi: 10.1016/j.aquatox.2019.105317
[37] SHI P, GENG S, FENG T, et al. Effects of Ascophyllum nodosum extract on growth and antioxidant defense systems of two freshwater microalgae[J]. Journal of Applied Phycology, 2018, 30(2): 851-859. doi: 10.1007/s10811-017-1287-z
[38] MO L Y, YANG Y L, ZHAO D N, et al. Time-dependent toxicity and health effects mechanism of cadmium to three green algae[J]. International Journal of Environmental Research and Public Health, 2022, 19(17): 10974. doi: 10.3390/ijerph191710974
[39] KHAZRI A, MEZNI A, SELLAMI B, et al. Protective properties of filamentous blue–green alga Spirulina against the oxidative stress induced by cadmium in freshwater musselUnio ravoisieri[J]. Chemistry and Ecology, 2019, 35(9): 825-834. doi: 10.1080/02757540.2019.1664481