[1] GEELHAAR T, GRIESAR K, RECKMANN B. 125 Years of liquid crystals—a scientific revolution in the home[J]. Angewandte Chemie International Edition, 2013, 52(34): 8798-8809. doi: 10.1002/anie.201301457
[2] LIANG X X, XIE R M, ZHU C Y, et al. Comprehensive identification of liquid crystal monomers-biphenyls, cyanobiphenyls, fluorinated biphenyls, and their analogues-in waste LCD panels and the first estimate of their global release into the environment[J]. Environmental Science & Technology, 2021, 55(18): 12424-12436.
[3] LIU Z F, XU Z Y, HUANG H H, et al. A study of waste liquid crystal display generation in mainland China [J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2016, 34(1): 58-66.
[4] LI J H, SU G Y, LETCHER R J, et al. Liquid crystal monomers (LCMs): A new generation of persistent bioaccumulative and toxic (PBT) compounds?[J]. Environmental Science & Technology, 2018, 52(9): 5005-5006.
[5] SU H J, SHI S B, ZHU M, et al. Persistent, bioaccumulative, and toxic properties of liquid crystal monomers and their detection in indoor residential dust[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52): 26450-26458.
[6] LI C, HUANG Y, ZHANG X, et al. Atmospheric fate and risk investigation of typical liquid crystal monomers[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(9): 3600-3607.
[7] CHENG Z P, SHI Q Y, WANG Y, et al. Electronic-waste-driven pollution of liquid crystal monomers: Environmental occurrence and human exposure in recycling industrial parks[J]. Environmental Science & Technology, 2022, 56(4): 2248-2257.
[8] SHEN M J, FENG Z Q, LIANG X X, et al. Release and gas-particle partitioning behavior of liquid crystal monomers during the dismantling of waste liquid crystal display panels in E-waste recycling facilities[J]. Environmental Science & Technology, 2022, 56(5): 3106-3116.
[9] SU H J, SHI S B, ZHU M, et al. Liquid crystal monomers (LCMs) in sediments: Method validation and detection in sediment samples from three typical areas[J]. Environmental Science & Technology, 2021, 55(4): 2336-2345.
[10] JIN Q Q, TAO D Y, LU Y C, et al. New insight on occurrence of liquid crystal monomers: A class of emerging e-waste pollutants in municipal landfill leachate[J]. Journal of Hazardous Materials, 2022, 423: 127146. doi: 10.1016/j.jhazmat.2021.127146
[11] LI R R, REN K F, SU H J, et al. Target and suspect analysis of liquid crystal monomers in soil from different urban functional zones[J]. Science of the Total Environment, 2023, 854: 158408. doi: 10.1016/j.scitotenv.2022.158408
[12] MERCIER F, GLORENNEC P, THOMAS O, et al. Organic contamination of settled house dust, a review for exposure assessment purposes[J]. Environmental Science & Technology, 2011, 45(16): 6716-6727.
[13] BESIS A, SAMARA C. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments - A review on occurrence and human exposure[J]. Environmental Pollution, 2012, 169: 217-229. doi: 10.1016/j.envpol.2012.04.009
[14] ZHANG Q Y, LI X J, WANG Y, et al. Occurrence of novel organophosphate esters derived from organophosphite antioxidants in an e-waste dismantling area: Associations between hand wipes and dust[J]. Environment International, 2021, 157: 106860. doi: 10.1016/j.envint.2021.106860
[15] 侯燕, 唐斌, 蔡凤珊, 等. 广州市居民家庭室内灰尘中传统和新型阻燃剂与塑化剂的污染特征及健康风险评估[J]. 环境科学学报, 2022, 42(7): 106-122. HOU Y, TANG B, CAI F S, et al. Legacy and novel flame retardants and plasticizers in indoor dust from residents' homes in Guangzhou: Pollution status and human exposure assessment[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 106-122 (in Chinese).
[16] 熊仕茂, 朱晓辉, 蔡凤珊, 等. 灰尘中有机磷系阻燃剂及其降解产物检测方法的建立[J]. 环境化学, 2019, 38(11): 2457-2466. doi: 10.7524/j.issn.0254-6108.2018120901 XIONG S M, ZHU X H, CAI F S, et al. Establishment of detection method for organic phosphorus flame retardants and their degradation products in dust[J]. Environmental Chemistry, 2019, 38(11): 2457-2466 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018120901
[17] TANG B, CHRISTIA C, MALARVANNAN G, et al. Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China[J]. Environment International, 2020, 143: 105972. doi: 10.1016/j.envint.2020.105972
[18] ZHANG S H, YANG M, LI Y H, et al. Occurrence, distribution, and human exposure of emerging liquid crystal monomers (LCMs) in indoor and outdoor dust: A nationwide study[J]. Environment International, 2022, 164: 107295. doi: 10.1016/j.envint.2022.107295
[19] USEPA. Exposure factors handbook 2011 edition (final report) [R]. EPA/600/R-09/052F. Washington, DC: Environmental Protection Agency, Office of Research Development, 2011.
[20] YANG R H, WANG X Y, NIU Y M, et al. Fluorinated liquid-crystal monomers in paired breast milk and indoor dust: A pilot prospective study[J]. Environment International, 2023, 176: 107993. doi: 10.1016/j.envint.2023.107993
[21] TAO F, ABDALLAH M A E, HARRAD S. Emerging and legacy flame retardants in UK indoor air and dust: Evidence for replacement of PBDEs by emerging flame retardants?[J]. Environmental Science & Technology, 2016, 50(23): 13052-13061.
[22] ZHAO L M, ZHANG Y Y, DENG Y R, et al. Traditional and emerging organophosphate esters (OPEs) in indoor dust of Nanjing, Eastern China: Occurrence, human exposure, and risk assessment[J]. Science of the Total Environment, 2020, 712: 136494. doi: 10.1016/j.scitotenv.2020.136494
[23] BUTTE W, HEINZOW B. Pollutants in house dust as indicators of indoor contamination[J]. Reviews of Environmental Contamination and Toxicology, 2002, 175: 1-46.
[24] SHINOHARA N, UCHINO K. Diethylhexyl phthalate (DEHP) emission to indoor air and transfer to house dust from a PVC sheet[J]. Science of the Total Environment, 2020, 711: 134573. doi: 10.1016/j.scitotenv.2019.134573
[25] WESCHLER C J, CARSLAW N. Indoor chemistry[J]. Environmental Science & Technology, 2018, 52(5): 2419-2428.
[26] SU H Q, LU Y L, WANG P, et al. Perfluoroalkyl acids (PFAAs) in indoor and outdoor dusts around a mega fluorochemical industrial park in China: Implications for human exposure[J]. Environment International, 2016, 94: 667-673. doi: 10.1016/j.envint.2016.07.002
[27] 朱智成, 陈社军, 丁南, 等. 珠三角电子垃圾和城市地区家庭灰尘中多氯联苯的来源及暴露风险[J]. 环境科学, 2014, 35(8): 3066-3072. ZHU Z C, CHEN S J, DING N, et al. Polychlorinated biphenyls in house dust at an E-waste site and urban site in the Pearl River Delta, southern China: Sources and human exposure and health risks[J]. Environmental Science, 2014, 35(8): 3066-3072 (in Chinese).
[28] LI Y H, ZHANG T, CHENG Z P, et al. Direct evidence on occurrence of emerging liquid crystal monomers in human serum from E-waste dismantling workers: Implication for intake assessment[J]. Environment International, 2022, 169: 107535. doi: 10.1016/j.envint.2022.107535
[29] KHAN M U, LI J, ZHANG G, et al. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan[J]. Environmental Pollution, 2016, 216: 662-674. doi: 10.1016/j.envpol.2016.06.030
[30] HE C, WANG X Y, THAI P, et al. Organophosphate and brominated flame retardants in Australian indoor environments: Levels, sources, and preliminary assessment of human exposure[J]. Environmental Pollution, 2018, 235: 670-679. doi: 10.1016/j.envpol.2017.12.017