[1] 鲍雪蓉. 铅蓄电池企业绿化带土壤铅污染特征研究[J]. 资源节约与环保, 2022(7): 116-119. BAO X R. Study on lead pollution characteristics of soil in green belt of lead storage battery enterprises[J]. Resources Economization & Environmental Protection, 2022(7): 116-119 (in Chinese).
[2] ZOU Y D, WANG X X, KHAN A, et al. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review[J]. Environmental Science & Technology, 2016, 50(14): 7290-7304.
[3] WAN D, ZHANG N C, CHEN W L, et al. Organic matter facilitates the binding of Pb to iron oxides in a subtropical contaminated soil[J]. Environmental Science and Pollution Research, 2018, 25(32): 32130-32139.
[4] ZHAO J, HUANG B W, GAO W, et al. Periodic DFT study on heavy metals Cu(II) and Pb(II) atoms adsorption on Na-montmorillonite (010) edge surface[J]. Solid State Communications, 2023, 366/367: 115171.
[5] ZHU X F, JACKSON R D, DeLUCIA E H, et al. The soil microbial carbon pump: From conceptual insights to empirical assessments[J]. Global Change Biology, 2020, 26(11): 6032-6039. doi: 10.1111/gcb.15319
[6] QU C C, CHEN W L, HU X P, et al. Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors[J]. Environment International, 2019, 131: 104995.
[7] BAO Y P, BOLAN N S, LAI J H, et al. Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(22): 4016-4037. doi: 10.1080/10643389.2021.1974766
[8] 刘洵, 赖潘民旺, 张敏, 等. 微生物-矿物相互作用: 机制与重金属固定效应 [J/OL]. 环境化学, 2024,DOI:10.7524/j.issn.0254-6108.2022080205. LIU X, LAIPAN M W, ZHANG M, et al. Microbe-mineral interactions: Mechanisms and immobilization effect toward heavy metals[J]. Environmental Chemistry, 2024,DOI:10.7524/j.issn.0254-6108.2022080205(in Chinese).
[9] UDDIN M K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J]. Chemical Engineering Journal, 2017, 308: 438-462.
[10] DIMIRKOU A, IOANNOU A, DOULA M. Preparation, characterization and sorption properties for phosphates of hematite, bentonite and bentonite-hematite systems[J]. Advances in Colloid and Interface Science, 2002, 97(1/2/3): 37-61.
[11] MANJAIAH K M, KUMAR S, SACHDEV M S, et al. Study of clay-organic complexes[J]. Current Science, 2010, 98(7): 915-921.
[12] VEGA F A, COVELO E F, ANDRADE M L. A versatile parameter for comparing the capacities of soils for sorption and retention of heavy metals dumped individually or together: Results for cadmium, copper and lead in twenty soil horizons[J]. Journal of Colloid and Interface Science, 2008, 327(2): 275-286. doi: 10.1016/j.jcis.2008.08.027
[13] CERQUEIRA B, COVELO E F, ANDRADE L, et al. The influence of soil properties on the individual and competitive sorption and desorption of Cu and Cd[J]. Geoderma, 2011, 162(1/2): 20-26.
[14] 刘金香, 葛玉杰, 谢水波, 等. 改性微生物吸附剂在重金属废水处理中的应用进展[J]. 微生物学通报, 2020, 47(3): 941-951. LIU J X, GE Y J, XIE S B, et al. Application progress of modified microbial adsorbents for the treatment of heavymetal wastewater[J]. Microbiology China, 2020, 47(3): 941-951 (in Chinese).
[15] WEI J E, ZHANG F F, MA D L, et al. Microbial necromass carbon in estuarine tidal wetlands of China: Influencing factors and environmental implication[J]. Science of the Total Environment, 2023, 876: 162566.
[16] BITTAR F, GOURIET F, KHELAIFIA S, et al. FastFung: A novel medium for the culture and isolation of fastidious fungal species from clinical samples[J]. Journal of Microbiological Methods, 2021, 180: 106108. doi: 10.1016/j.mimet.2020.106108
[17] ELZINGA E J, HUANG J H, CHOROVER J, et al. ATR-FTIR spectroscopy study of the influence of pH and contact time on the adhesion of Shewanella putrefaciens bacterial cells to the surface of hematite[J]. Environmental Science & Technology, 2012, 46(23): 12848-12855.
[18] LV J T, MIAO Y X, HUANG Z Q, et al. Facet-mediated adsorption and molecular fractionation of humic substances on hematite surfaces[J]. Environmental Science & Technology, 2018, 52(20): 11660-11669.
[19] ADHIKARI D, ZHAO Q, DAS K, et al. Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction[J]. Geochimica et Cosmochimica Acta, 2017, 212: 221-233. doi: 10.1016/j.gca.2017.06.017
[20] CECILIA J A, GARCÍA-SANCHO C, FRANCO F. Montmorillonite based porous clay heterostructures: Influence of Zr in the structure and acidic properties[J]. Microporous and Mesoporous Materials, 2013, 176: 95-102. doi: 10.1016/j.micromeso.2013.03.037
[21] SCHMALENBERGER A, DURAN A L, BRAY A W, et al. Oxalate secretion by ectomycorrhizal Paxillus involutus is mineral-specific and controls calcium weathering from minerals[J]. Scientific Reports, 2015, 5: 12187. doi: 10.1038/srep12187
[22] 常汉达, 王晶, 张凤华. 基于傅里叶红外光谱弃耕地开垦前后土壤有机质结构变化分析[J]. 土壤通报, 2019, 50(2): 333-340. CHANG H D, WANG J, ZHANG F H. Change in soil organic matter structure before and after reclamation for the abandoned farmland based on Fourier transform infrared spectrometer[J]. Chinese Journal of Soil Science, 2019, 50(2): 333-340 (in Chinese).
[23] YE Q Q, LI Q H, LI X. Removal of heavy metals from wastewater using biochars: Adsorption and mechanisms[J]. Environmental Pollutants and Bioavailability, 2022, 34(1): 385-394. doi: 10.1080/26395940.2022.2120542
[24] 郭微, 戴九兰, 王仁卿. 溶解性有机质影响土壤吸附重金属的研究进展[J]. 土壤通报, 2012, 43(3): 761-768. GUO W, DAI J L, WANG R Q. Progress in the effect of dissolved organic matter on adsorption of heavy metals by soil[J]. Chinese Journal of Soil Science, 2012, 43(3): 761-768 (in Chinese).
[25] 姜晶, 邓精灵, 盛光遥. 生物炭老化及其对重金属吸附影响研究进展[J]. 生态环境学报, 2022, 31(10): 2089-2100. JIANG J, DENG J L, SHENG G Y. A review of biochar aging and its impact on the adsorption of heavy metals[J]. Ecology and Environmental Sciences, 2022, 31(10): 2089-2100 (in Chinese).
[26] LU Z F, WANG H M, LI J Y, et al. Adsorption characteristics of bio-adsorbent on chromium(III) in industrial wastewater[J]. Water Science and Technology, 2015, 72(7): 1051-1061.
[27] ZHU T T, ZHOU C H, KABWE F B, et al. Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites[J]. Applied Clay Science, 2019, 169: 48-66. doi: 10.1016/j.clay.2018.12.006
[28] ZHAO Q J, QIU Y, LAN T, et al. Comparison of lead adsorption characteristics onto soil-derived particulate organic matter versus humic acid[J]. Journal of Soils and Sediments, 2021, 21(7): 2589-2603. doi: 10.1007/s11368-021-02911-4
[29] LU Y, LIANG Y Z, LIU F, et al. Nano scale visualization of enhanced adsorption and distribution of humic acid on hematite: Effect of Pb(II) ions[J]. Chemical Geology, 2020, 541: 119573. doi: 10.1016/j.chemgeo.2020.119573
[30] KRUMINA L, OP de BEECK M, MEKLESH V, et al. Ectomycorrhizal fungal transformation of dissolved organic matter: Consequences for reductive iron oxide dissolution and fenton-based oxidation of mineral-associated organic matter[J]. Frontiers in Earth Science, 2022, 10: 763695. doi: 10.3389/feart.2022.763695
[31] SHAH F, NICOLÁS C, BENTZER J, et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors[J]. The New Phytologist, 2016, 209(4): 1705-1719.
[32] LANG M F, YU X Q, LIU J H, et al. Fenton aging significantly affects the heavy metal adsorption capacity of polystyrene microplastics[J]. Science of the Total Environment, 2020, 722: 137762. doi: 10.1016/j.scitotenv.2020.137762
[33] PORSCH K, DIPPON U, RIJAL M L, et al. In-situ magnetic susceptibility measurements As a tool to follow geomicrobiological transformation of Fe minerals[J]. Environmental Science & Technology, 2010, 44(10): 3846-3852.
[34] HOHMANN C, WINKLER E, MORIN G, et al. Anaerobic Fe(II)-oxidizing bacteria show As resistance and immobilize As during Fe(III) mineral precipitation[J]. Environmental Science & Technology, 2010, 44(1): 94-101.
[35] JOHNSON S B, YOON T H, BROWN G E. Adsorption of organic matter at mineral/water interfaces: 5. effects of adsorbed natural organic matter analogues on mineral dissolution[J]. Langmuir, 2005, 21(7): 2811-2821. doi: 10.1021/la0481041
[36] OMOIKE A, CHOROVER J, KWON K D, et al. Adhesion of bacterial exopolymers to α-FeOOH: inner-sphere complexation of phosphodiester groups[J]. Langmuir, 2004, 20(25): 11108-11114. doi: 10.1021/la048597+
[37] JOHNSON S B, BROWN G E, HEALY T W, et al. Adsorption of organic matter at mineral/water interfaces. 6. effect of inner-sphere versus outer-sphere adsorption on colloidal stability[J]. Langmuir, 2005, 21(14): 6356-6365. doi: 10.1021/la047030q
[38] HINSINGER P, PLASSARD C, TANG C X, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review[J]. Plant and Soil, 2003, 248(1): 43-59.
[39] YING-CHIEN C, SU Y P, CHIING-CHANG C, et al. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall[J]. Acta Pharmacologica Sinica, 2004, 25(7): 932-6.
[40] RAM R, MORRISROE L, ETSCHMANN B, et al. Lead (Pb) sorption and co-precipitation on natural sulfide, sulfate and oxide minerals under environmental conditions[J]. Minerals Engineering, 2021, 163: 106801. doi: 10.1016/j.mineng.2021.106801
[41] BRADL H B. Adsorption of heavy metal ions on soils and soils constituents[J]. Journal of Colloid and Interface Science, 2004, 277(1): 1-18. doi: 10.1016/j.jcis.2004.04.005
[42] MASON S E, ICEMAN C R, TANWAR K S, et al. Pb(II) adsorption on isostructural hydrated alumina and hematite (0001) surfaces: A DFT study[J]. The Journal of Physical Chemistry C, 2009, 113(6): 2159-2170.