[1] 张培善, 陶克捷. 中国稀土矿主要矿物学特征[J]. 中国稀土学报, 1985, 3(3): 1-6. doi: 10.3321/j.issn:1000-4343.1985.03.001 ZHANG P S, TAO K J. Mineralogical charaterist1cs of rare earth minerals in China[J]. Journal of the Chinese Rare Earth Society, 1985, 3(3): 1-6 (in Chinese). doi: 10.3321/j.issn:1000-4343.1985.03.001
[2] 王炯辉, 张喜, 陈道贵, 等. 南方离子型稀土矿开采对地下水的影响及其监控[J]. 科技导报, 2015, 33(18): 23-27. WANG J H, ZHANG X, CHEN D G, et al. Influence of during south ion-absorbed-type rare earth deposit mining on groundwater and it’s monitoring[J]. Science & Technology Review, 2015, 33(18): 23-27 (in Chinese).
[3] GUDDETI S S, KURAKALVA R M. Potential toxic element contamination and non-carcinogenic risk assessment of groundwater from rapidly growing urban areas in Telangana, India[J]. Environmental Science and Pollution Research International, 2023, doi. org/10.1007/s11356-023-28378-z.GUDDETI S S,KURAKALVA R M.Potential toxic element contamination and non-carcinogenic risk assessment of groundwater from rapidly growing urban areas in Telangana,India[J].Environmental Science and Pollution Research International,2023, doi.org/10.1007/s11356-023-28378-z.
[4] AN Q, JIANG Y Q, NAN H Y, et al. Unraveling sorption of nickel from aqueous solution by KMnO4 and KOH-modified peanut shell biochar: Implicit mechanism[J]. Chemosphere, 2019, 214: 846-854. doi: 10.1016/j.chemosphere.2018.10.007
[5] BEN SALEM D, OUAKOUAK A, TOUAHRA F, et al. Easy separable, floatable, and recyclable magnetic-biochar/alginate bead as super-adsorbent for adsorbing copper ions in water media[J]. Bioresource Technology, 2023, 383: 129225. doi: 10.1016/j.biortech.2023.129225
[6] 梅杨璐, 徐晋, 张寅, 等. 氮改性对生物炭理化性质的影响及其对废水中铜离子的吸附特性[J]. 环境化学, 2022, 41(5): 1796-1808. doi: 10.7524/j.issn.0254-6108.2021012302 MEI Y L, XU J, ZHANG Y, et al. Effect of nitrogen modification on the properties of biochars and their adsorption behavior on Cu2+ removal from wastewater[J]. Environmental Chemistry, 2022, 41(5): 1796-1808 (in Chinese). doi: 10.7524/j.issn.0254-6108.2021012302
[7] WIJEYAWARDANA P, NANAYAKKARA N, LAW D, et al. Performance of biochar mixed cement paste for removal of Cu, Pb and Zn from stormwater[J]. Environmental Research, 2023, 232: 116331. doi: 10.1016/j.envres.2023.116331
[8] SUN C, CHEN T, HUANG Q X, et al. Enhanced adsorption for Pb(II) and Cd(II) of magnetic rice husk biochar by KMnO4 modification[J]. Environmental Science and Pollution Research, 2019, 26(9): 8902-8913. doi: 10.1007/s11356-019-04321-z
[9] HOSLETT J, GHAZAL H, KATSOU E, et al. The removal of tetracycline from water using biochar produced from agricultural discarded material[J]. Science of the Total Environment, 2021, 751: 141755. doi: 10.1016/j.scitotenv.2020.141755
[10] YANG H F, LI X M, WANG Y T, et al. Effective removal of ammonium from aqueous solution by ball-milled biochar modified with NaOH[J]. Processes, 2023, 11(6): 1671. doi: 10.3390/pr11061671
[11] JEDYNAK K, CHARMAS B. Adsorption properties of biochars obtained by KOH activation[J]. Adsorption, 2023: 1-17.
[12] 匡开月, 刘畅, 俞志敏, 等. 加拿大一枝黄花衍生炭对Cr(Ⅵ)吸附性能研究[J]. 生物学杂志, 2022, 39(4): 55-60,71. doi: 10.3969/j.issn.2095-1736.2022.04.055 KUANG K Y, LIU C, YU Z M, et al. Adsorption performance of Cr(Ⅵ)by activated biochar derived from Solidago canadensis L[J]. Journal of Biology, 2022, 39(4): 55-60,71 (in Chinese) doi: 10.3969/j.issn.2095-1736.2022.04.055
[13] HARIF S, ABOULHASSAN M A, BAMMOU L, et al. Improving the removal of anionic surfactant in cardboard industry wastewater by coagulation/flocculation: Process optimization with response surface methodology[J]. Water, Air, & Soil Pollution, 2023, 234(7): 477.
[14] ARNI L A, HAPIZ A, ABDULHAMEED A S, et al. Design of separable magnetic chitosan grafted-benzaldehyde for azo dye removal via a response surface methodology: Characterization and adsorption mechanism[J]. International Journal of Biological Macromolecules, 2023, 242: 125086. doi: 10.1016/j.ijbiomac.2023.125086
[15] ZHAO Z Q, SHEN X L, GAO L J, et al. Adsorption and co-adsorption of 2, 4-difluoroaniline and copper (II) using nickel-manganese ferrite magnetic biochar derived from orange peel[J]. Water, Air, & Soil Pollution, 2023, 234(7): 1-19.
[16] GUO R S, YAN L L, RAO P H, et al. Nitrogen and sulfur co-doped biochar derived from peanut shell with enhanced adsorption capacity for diethyl phthalate[J]. Environmental Pollution, 2020, 258: 113674. doi: 10.1016/j.envpol.2019.113674
[17] ZHANG Z L, LI Y, DING L, et al. Novel sodium bicarbonate activation of cassava ethanol sludge derived biochar for removing tetracycline from aqueous solution: Performance assessment and mechanism insight[J]. Bioresource Technology, 2021, 330: 124949. doi: 10.1016/j.biortech.2021.124949
[18] CHEN T W, LUO L, DENG S H, et al. Sorption of tetracycline on H3PO4 modified biochar derived from rice straw and swine manure[J]. Bioresource Technology, 2018, 267: 431-437. doi: 10.1016/j.biortech.2018.07.074
[19] ZHOU R J, WANG Y B, ZHANG M, et al. Adsorptive removal of phosphate from aqueous solutions by thermally modified copper tailings[J]. Environmental Monitoring and Assessment, 2019, 191(4): 198. doi: 10.1007/s10661-019-7336-0
[20] DIXIT S, YADAV V L. Optimization of polyethylene/polypropylene/alkali modified wheat straw composites for packaging application using RSM[J]. Journal of Cleaner Production, 2019, 240: 118228. doi: 10.1016/j.jclepro.2019.118228
[21] 杜晓燕, 韩伟胜, 孟子涵, 等. 基于响应曲面法制备钢渣-花生壳基生态活性炭及其吸附性能研究[J]. 工程科学学报, 2023, 45(6): 979-986. DU X Y, HAN W S, MENG Z H, et al. Preparation of steel slag-peanut shell-based ecological activated carbon based on response surface method and its adsorption performance[J]. Chinese Journal of Engineering, 2023, 45(6): 979-986 (in Chinese).
[22] ZHOU R J, ZHANG M, LI J Y, et al. Optimization of preparation conditions for biochar derived from water hyacinth by using response surface methodology (RSM) and its application in Pb2+ removal[J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104198. doi: 10.1016/j.jece.2020.104198
[23] 郝海艳, 王刚, 徐敏, 等. 响应面法优化制备螯合絮凝剂巯基乙酰化聚丙烯酰胺[J]. 环境化学, 2016, 35(6): 1269-1279. doi: 10.7524/j.issn.0254-6108.2016.06.2015091104 HAO H Y, WANG G, XU M, et al. Optimization of preparation conditions of chelating flocculant with mercaptoacetyl polyacrylamide by response surface methodology[J]. Environmental Chemistry, 2016, 35(6): 1269-1279 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.06.2015091104
[24] GHANI Z A, YUSOFF M S, ZAMAN N Q, et al. Optimization of preparation conditions for activated carbon from banana pseudo-stem using response surface methodology on removal of color and COD from landfill leachate[J]. Waste Management, 2017, 62: 177-187. doi: 10.1016/j.wasman.2017.02.026
[25] LIU Y C, JI X G, GAO Z L, et al. Adsorption characteristics and removal mechanism of malathion in water by high and low temperature calcium-modified water hyacinth-based biochar[J]. Journal of Cleaner Production, 2023, 411: 137258. doi: 10.1016/j.jclepro.2023.137258
[26] OUYANG T, ZHANG T Y, WANG H Z, et al. High-throughput fabrication of porous carbon by chemical foaming strategy for high performance supercapacitor[J]. Chemical Engineering Journal, 2018, 352: 459-468. doi: 10.1016/j.cej.2018.06.184
[27] BISPO M D, SCHNEIDER J K, Da SILVA OLIVEIRA D, et al. Production of activated biochar from coconut fiber for the removal of organic compounds from phenolic[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2743-2750. doi: 10.1016/j.jece.2018.04.029
[28] YANG X D, WAN Y S, ZHENG Y L, et al. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review[J]. Chemical Engineering Journal, 2019, 366: 608-621. doi: 10.1016/j.cej.2019.02.119
[29] AHMAD GANIE Z, KHANDELWAL N, CHOUDHARY A, et al. Clean water production from plastic and heavy metal contaminated waters using redox-sensitive iron nanoparticle-loaded biochar[J]. Environmental Research, 2023, 235: 116605. doi: 10.1016/j.envres.2023.116605
[30] 吴权佳, 王铎, 叶涛, 等. 剩余污泥裂解灰陶粒吸附酸性矿山废水中Zn2+、Cu2+、Pb2+性能及机理[J]. 有色金属(冶炼部分), 2023(8): 149-158. WU Q J, WANG D, YE T, et al. Performance and mechanism of Zn2+, Cu2+ and Pb2+ adsorption by surplus sludge lysed ash ceramsite in acid mine drainage[J]. Nonferrous Metals (Extractive Metallurgy), 2023(8): 149-158 (in Chinese).
[31] NOUIOUA A, BEN SALEM D, OUAKOUAK A, et al. Production of biochar from Melia azedarach seeds for the crystal violet dye removal from water: Combining of hydrothermal carbonization and pyrolysis[J]. Bioengineered, 2023, 14(1): 290-306. doi: 10.1080/21655979.2023.2236843
[32] SUN D Z, LI F Y, JIN J W, et al. Qualitative and quantitative investigation on adsorption mechanisms of Cd(II) on modified biochar derived from co-pyrolysis of straw and sodium phytate[J]. Science of the Total Environment, 2022, 829: 154599. doi: 10.1016/j.scitotenv.2022.154599
[33] UDAWATTA M M, de SILVA R C L, de SILVA D S M. Facile, green approach for aqueous methylene blue dye adsorption: Coconut vinegar treated Trema orientalis wood biochar[J]. Environmental Engineering Research, 2023, 28(5): 220617.
[34] HAMID Y, LIU L, USMAN M, et al. Functionalized biochars: Synthesis, characterization, and applications for removing trace elements from water[J]. Journal of Hazardous Materials, 2022, 437: 129337. doi: 10.1016/j.jhazmat.2022.129337
[35] 贺庆丽, 姚合宝, 冯忠耀, 等. 碳氮膜的红外光谱特性分析[J]. 光子学报, 2002, 31(9): 1106-1108. HE Q L, YAO H B, FENG Z Y, et al. The character analysis of C-N film infraed absorption spectrum[J]. Acta Photonica Sinica, 2002, 31(9): 1106-1108 (in Chinese).
[36] GOLOVIN A V, KORSAKOV A V, ZAITSEV A N. in situ ambient and high-temperature Raman spectroscopic studies of nyerereite (Na, K)2Ca(CO3)2: Can hexagonal zemkorite be stable at earth-surface conditions?[J]. Journal of Raman Spectroscopy, 2015, 46(10): 904-912. doi: 10.1002/jrs.4756
[37] GOLOVIN A V, SHARYGIN I S, KAMENETSKY V S, et al. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites[J]. Chemical Geology, 2018, 483: 261-274. doi: 10.1016/j.chemgeo.2018.02.016
[38] XIE X, HE J T, HUANG J H, et al. Hyperbranched dithiocarbamate-modified biochar: A promising adsorbent for selective removal of Pb(II) from wastewater[J]. Sustainability, 2023, 15(2): 1245. doi: 10.3390/su15021245
[39] 吴有龙, 徐嘉龙, 马中青, 等. KOH活化法制备气化稻壳活性炭及其吸附性能[J]. 生物质化学工程, 2021, 55(1): 31-38. WU Y L, XU J L, MA Z Q, et al. Preparation of activated carbon from gasified rice husk char activated by KOH and its adsorption properties[J]. Biomass Chemical Engineering, 2021, 55(1): 31-38 (in Chinese).
[40] DECHAPANYA W, KHAMWICHIT A. Biosorption of aqueous Pb(II) by H3PO4-activated biochar prepared from palm kernel shells (PKS)[J]. Heliyon, 2023, 9(7): e17250. doi: 10.1016/j.heliyon.2023.e17250
[41] LIU C C, LIN J X, CHEN H J, et al. Comparative study of biochar modified with different functional groups for efficient removal of Pb(II) and Ni(II)[J]. International Journal of Environmental Research and Public Health, 2022, 19(18): 11163. doi: 10.3390/ijerph191811163
[42] BAKAL P P, DAS G. Biochar derived from the stem of Ricinus communis L. and Colocasia esculanta: Efficient adsorbent for the removal of Cd(II) and Pb(II) ions from an aqueous environment[J]. Journal of Water Chemistry and Technology, 2023, 45(3): 200-210. doi: 10.3103/S1063455X23030025
[43] ZHANG J J, SHAO J G, JIN Q Z, et al. Sludge-based biochar activation to enhance Pb(Ⅱ) adsorption[J]. Fuel, 2019, 252: 101-108. doi: 10.1016/j.fuel.2019.04.096
[44] 张凤智, 王敦球, 曹星沣, 等. 高锰酸钾改性椰壳生物炭对水中Cd(Ⅱ)和Ni(Ⅱ)的去除性能及机制[J]. 环境科学, 2023, 44(6): 3278-3287. ZHANG F Z, WANG D Q, CAO X F, et al. Removal performance and mechanism of potassium permanganate modified coconut shell biochar for Cd(Ⅱ) and Ni(Ⅱ) in aquatic environment[J]. Environmental Science, 2023, 44(6): 3278-3287 (in Chinese).
[45] van VEENHUYZEN B, TICHAPONDWA S, HÖRSTMANN C, et al. High capacity Pb(II) adsorption characteristics onto raw- and chemically activated waste activated sludge[J]. Journal of Hazardous Materials, 2021, 416: 125943. doi: 10.1016/j.jhazmat.2021.125943
[46] MAHDI Z, EL HANANDEH A, YU Q J. Preparation, characterization and application of surface modified biochar from date seed for improved lead, copper, and nickel removal from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103379. doi: 10.1016/j.jece.2019.103379
[47] 邓振乡, 秦磊, 王观石, 等. 离子型稀土矿山氨氮污染及其治理研究进展[J]. 稀土, 2019, 40(2): 120-129. DENG Z X, QIN L, WANG G S, et al. Ammonia nitrogen pollution and progress in its treatment of ionic rare earth mines[J]. Chinese Rare Earths, 2019, 40(2): 120-129 (in Chinese).