[1] LIANG Z L, YU Y J, SUN B B, et al. The underappreciated role of fugitive VOCs in ozone formation and health risk assessment emitted from seven typical industries in China[J]. Journal of Environmental Sciences, 2024, 136: 647-657. doi: 10.1016/j.jes.2022.12.037
[2] ZHAO H, CHEN K Y, LIU Z, et al. Coordinated control of PM2.5 and O3 is urgently needed in China after implementation of the “Air pollution prevention and control action plan”[J]. Chemosphere, 2021, 270: 129441. doi: 10.1016/j.chemosphere.2020.129441
[3] YUE X, UNGER N, HARPER K, et al. Ozone and haze pollution weakens net primary productivity in China[J]. Atmospheric Chemistry and Physics, 2017, 17(9): 6073-6089. doi: 10.5194/acp-17-6073-2017
[4] ANENBERG S C, SCHWARTZ J, SHINDELL D, et al. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls[J]. Environmental Health Perspectives, 2012, 120(6): 831-839. doi: 10.1289/ehp.1104301
[5] TAI A P K, MARTIN M V, HEALD C L. Threat to future global food security from climate change and ozone air pollution[J]. Nature Climate Change, 2014, 4(9): 817-821. doi: 10.1038/nclimate2317
[6] ATKINSON R. Atmospheric chemistry of VOCs and NO x[J]. Atmospheric Environment, 2000, 34(12/13/14): 2063-2101.
[7] WANG T, XUE L K, BRIMBLECOMBE P, et al. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects[J]. The Science of the Total Environment, 2017, 575: 1582-1596. doi: 10.1016/j.scitotenv.2016.10.081
[8] LIU Z Y, QI Z L, NI X F, et al. How to apply O3 and PM2.5 collaborative control to practical management in China: A study based on meta-analysis and machine learning[J]. Science of the Total Environment, 2021, 772: 145392. doi: 10.1016/j.scitotenv.2021.145392
[9] MOLHAVE L. Volatile organic compounds, indoor air quality and health[J]. Indoor Air, 1991, 1(4): 357-376. doi: 10.1111/j.1600-0668.1991.00001.x
[10] LI J, XIE S D, ZENG L M, et al. Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014[J]. Atmospheric Chemistry and Physics, 2015, 15(14): 7945-7959. doi: 10.5194/acp-15-7945-2015
[11] QI J, ZHENG B, LI M, et al. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China[J]. Atmospheric Environment, 2017, 170: 156-168. doi: 10.1016/j.atmosenv.2017.09.039
[12] 山西省统计局. 山西统计年鉴. 2022[M]. 北京: 中国统计出版社有限公司, 2022. Shanxi Provincial Bureau of Statistics. Shanxi statistical yearbook. 2022[M]. Beijing: China Statistics Press, 2022(in Chinese).
[13] WANG Y, CHENG K, TIAN H Z, et al. Analysis of reduction potential of primary air pollutant emissions from coking industry in China[J]. Aerosol and Air Quality Research, 2018, 18(2): 533-541. doi: 10.4209/aaqr.2017.04.0139
[14] 闫雨龙, 彭林. 山西省人为源VOCs排放清单及其对臭氧生成贡献[J]. 环境科学, 2016, 37(11): 4086-4093. YAN Y L, PENG L. Emission inventory of anthropogenic VOCs and its contribution to ozone formation in Shanxi Province[J]. Environmental Science, 2016, 37(11): 4086-4093 (in Chinese).
[15] ZHANG X M, WANG D, LIU Y, et al. Characteristics and ozone formation potential of volatile organic compounds in emissions from a typical Chinese coking plant[J]. Journal of Environmental Sciences (China), 2020, 95: 183-189. doi: 10.1016/j.jes.2020.03.018
[16] SHI J W, DENG H, BAI Z P, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China[J]. Science of the Total Environment, 2015, 515/516: 101-108. doi: 10.1016/j.scitotenv.2015.02.034
[17] LI R M, YAN Y L, PENG L, et al. Segment-based volatile organic compound emission characteristics from different types of coking plants in China[J]. Aerosol and Air Quality Research, 2021, 21(1): 200145. doi: 10.4209/aaqr.2020.04.0145
[18] MU L, FENG C Y, LI Y Y, et al. Emission factors and source profiles of VOCs emitted from coke production in Shanxi, China[J]. Environmental Pollution, 2023, 335: 122373. doi: 10.1016/j.envpol.2023.122373
[19] CHENG L, WEI W, ZHANG C Z, et al. Quantitation study on VOC emissions and their reduction potential for coking industry in China: Based on in situ measurements on treated and untreated plants[J]. Science of the Total Environment, 2022, 836: 155466. doi: 10.1016/j.scitotenv.2022.155466
[20] LI G H, WEI W, SHAO X, et al. A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts[J]. Journal of Environmental Sciences, 2018, 67: 78-88. doi: 10.1016/j.jes.2017.08.003
[21] 贾记红, 黄成, 陈长虹, 等. 炼焦过程挥发性有机物排放特征及其大气化学反应活性[J]. 环境科学学报, 2009, 29(5): 905-912. doi: 10.3321/j.issn:0253-2468.2009.05.002 JIA J H, HUANG C, CHEN C H, et al. Emission characterization and ambient chemical reactivity of volatile organic compounds(VOCs)from coking processes[J]. Acta Scientiae Circumstantiae, 2009, 29(5): 905-912 (in Chinese). doi: 10.3321/j.issn:0253-2468.2009.05.002
[22] 刘驰, 李洁, 马勇光. 机械炼焦过程中废气的无组织排放研究[J]. 能源与环境, 2017(6): 8-9,12. doi: 10.3969/j.issn.1672-9064.2017.06.004 LIU C, LI J, MA Y G. Study on unorganized emission of waste gas in mechanical coking process[J]. Energy and Environment, 2017(6): 8-9,12 (in Chinese). doi: 10.3969/j.issn.1672-9064.2017.06.004
[23] CARTER W P L. Computer modeling of environmental chamber measurements of maximum incremental reactivities of volatile organic compounds[J]. Atmospheric Environment, 1995, 29(18): 2513-2527. doi: 10.1016/1352-2310(95)00150-W
[24] 中华人民共和国环境保护部. 环境空气 挥发性有机物的测定 罐采样/气相色谱-质谱法: HJ 759—2015[S]. 北京: 中国环境科学出版社, 2015. Ministry of Environmental Protection of the People's Republic of China. Ambient air-Determination of volatile organic compounds- Collected by specially-prepared canistersand analyzed by gas chromatography/mass spectrometry: HJ 759—2015[S]. Beijing: China Environmental Science Press, 2015(in Chinese).
[25] 刘政, 徐晨曦, 陈军辉, 等. 典型钢铁企业挥发性有机物排放量测算及组分特征[J]. 中国环境科学, 2020, 40(10): 4292-4303. doi: 10.3969/j.issn.1000-6923.2020.10.012 LIU Z, XU C X, CHEN J H, et al. Emission estimation and component characteristics of volatile organic compounds in typical iron and steel enterprise[J]. China Environmental Science, 2020, 40(10): 4292-4303 (in Chinese). doi: 10.3969/j.issn.1000-6923.2020.10.012
[26] CARTER W P L. Development of the SAPRC-07 chemical mechanism[J]. Atmospheric Environment, 2010, 44(40): 5324-5335. doi: 10.1016/j.atmosenv.2010.01.026
[27] YAO S, WANG Q H, ZHANG J M, et al. Ambient volatile organic compounds in a heavy industrial city: Concentration, ozone formation potential, sources, and health risk assessment[J]. Atmospheric Pollution Research, 2021, 12(5): 101053. doi: 10.1016/j.apr.2021.101053
[28] WANG J, LI X F, WANG B, et al. Emission characteristics of volatile organic compounds during a typical top-charging coking process[J]. Environmental Pollution, 2022, 308: 119648. doi: 10.1016/j.envpol.2022.119648
[29] WANG R P, WANG X Q, CHENG S Y, et al. Emission characteristics and reactivity of volatile organic compounds from typical high-energy-consuming industries in North China[J]. Science of the Total Environment, 2022, 809: 151134. doi: 10.1016/j.scitotenv.2021.151134
[30] 李国昊, 魏巍, 程水源, 等. 炼焦过程VOCs排放特征及臭氧生成潜势[J]. 北京工业大学学报, 2014, 40(1): 91-99. doi: 10.11936/bjutxb2014010091 LI G H, WEI W, CHENG S Y, et al. Emission characterization and ozone formation potential of VOCs during the coking process[J]. Journal of Beijing University of Technology, 2014, 40(1): 91-99 (in Chinese). doi: 10.11936/bjutxb2014010091
[31] 卢立栋, 王浩, 郑娟, 等. 关中地区炼焦行业VOCs排放特征及潜势影响研究[J]. 环境科技, 2021, 34(4): 11-16. doi: 10.3969/j.issn.1674-4829.2021.04.004 LU L D, WANG H, ZHENG J, et al. Study on VOCs emission characteristics and potential impact of key industries in Guanzhong area[J]. Environmental Science and Technology, 2021, 34(4): 11-16 (in Chinese). doi: 10.3969/j.issn.1674-4829.2021.04.004
[32] LI J, ZHOU Y, SIMAYI M, et al. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China[J]. Journal of Cleaner Production, 2019, 214: 224-235. doi: 10.1016/j.jclepro.2018.12.308
[33] WANG H L, HAO R, FANG L, et al. Study on emissions of volatile organic compounds from a typical coking chemical plant in China[J]. The Science of the Total Environment, 2021, 752: 141927. doi: 10.1016/j.scitotenv.2020.141927