[1] LI X H, HUANG Y, CHEN J W. Advances in in silico toxicity assessment of nanomaterials and emerging contaminants[M]//Advances in Toxicology and Risk Assessment of Nanomaterials and Emerging Contaminants. Singapore: Springer Singapore, 2022: 325-347.
[2] GOMES A R, JUSTINO C, ROCHA-SANTOS T, et al. Review of the ecotoxicological effects of emerging contaminants to soil biota[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(10): 992-1007.
[3] YOUNIS S A, EL-FAWAL E M, SERP P. Nano-wastes and the environment: Potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies[M]// Handbook of Environmental Materials Management. Cham: Springer, 2018: 1-72.
[4] DIAMANTI-KANDARAKIS E, BOURGUIGNON J P, GIUDICE L C, et al. Endocrine-disrupting chemicals: An endocrine society scientific statement[J]. Endocrine Reviews, 2009, 30(4): 293-342. doi: 10.1210/er.2009-0002
[5] FLINT S, MARKLE T, THOMPSON S, et al. Bisphenol A exposure, effects, and policy: A wildlife perspective[J]. Journal of Environmental Management, 2012, 104: 19-34.
[6] LYCHE J L, GUTLEB A C, BERGMAN A, et al. Reproductive and developmental toxicity of phthalates[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2009, 12(4): 225-249. doi: 10.1080/10937400903094091
[7] FURXHI I, MURPHY F, MULLINS M, et al. Practices and trends of machine learning application in nanotoxicology[J]. Nanomaterials, 2020, 10(1): 116. doi: 10.3390/nano10010116
[8] VILLAVERDE J J, SEVILLA-MORÁN B, LÓPEZ-GOTI C, et al. Considerations of nano-QSAR/QSPR models for nanopesticide risk assessment within the European legislative framework[J]. Science of the Total Environment, 2018, 634: 1530-1539. doi: 10.1016/j.scitotenv.2018.04.033
[9] 张家晨, 张良, 庄树林. 分子起始事件在计算毒理学中的研究展望[J]. 环境化学, 2021, 40(9): 2629-2632. doi: 10.1002/etc.5146 ZHANG J C, ZHANG L, ZHUANG S L. Perspective of molecular initiating events in computational toxicology[J]. Environmental Chemistry, 2021, 40(9): 2629-2632 (in Chinese). doi: 10.1002/etc.5146
[10] JEONG J, CHOI J. Artificial intelligence-based toxicity prediction of environmental chemicals: Future directions for chemical management applications[J]. Environmental Science & Technology, 2022, 56(12): 7532-7543.
[11] COLLINS F S, GRAY G M, BUCHER J R. Toxicology. Transforming environmental health protection[J]. Science, 2008, 319(5865): 906-907. doi: 10.1126/science.1154619
[12] HUANG Y, LI X H, XU S J, et al. Quantitative structure-activity relationship models for predicting inflammatory potential of metal oxide nanoparticles[J]. Environmental Health Perspectives, 2020, 128(6): 67010. doi: 10.1289/EHP6508
[13] HUANG Y, LI X H, CAO J Y, et al. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells: Machine learning boosts nano-safety assessment[J]. Environment International, 2022, 164: 107258. doi: 10.1016/j.envint.2022.107258
[14] CAI X M, LIU X, JIANG J, et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments[J]. Small, 2020, 16(36): e1907663. doi: 10.1002/smll.201907663
[15] MU Q X, JIANG G B, CHEN L X, et al. Chemical basis of interactions between engineered nanoparticles and biological systems[J]. Chemical Reviews, 2014, 114(15): 7740-7781. doi: 10.1021/cr400295a
[16] WANG Y L, CAI R, CHEN C Y. The nano-bio interactions of nanomedicines: Understanding the biochemical driving forces and redox reactions[J]. Accounts of Chemical Research, 2019, 52(6): 1507-1518. doi: 10.1021/acs.accounts.9b00126
[17] YANG Z X, GE C C, LIU J J, et al. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides[J]. Nanoscale, 2015, 7(44): 18725-18737. doi: 10.1039/C5NR01172H
[18] KANG S G, ZHOU G Q, YANG P, et al. Molecular mechanism of pancreatic tumor metastasis inhibition by Gd@C82(OH)22 and its implication for de novo design of nanomedicine[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38): 15431-15436.
[19] GU Z L, ZHAO L, GE C C, et al. Facet-regulated adhesion of double-stranded DNA on palladium surfaces[J]. Nanoscale, 2019, 11(4): 1827-1836. doi: 10.1039/C8NR06203J
[20] LI B Y, BELL D R, GU Z L, et al. Protein WW domain denaturation on defective graphene reveals the significance of nanomaterial defects in nanotoxicity[J]. Carbon, 2019, 146: 257-264. doi: 10.1016/j.carbon.2019.01.107
[21] BAN Z, YUAN P, YU F B, et al. Machine learning predicts the functional composition of the protein corona and the cellular recognition of nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(19): 10492-10499.
[22] FINDLAY M R, FREITAS D N, MOBED-MIREMADI M, et al. Machine learning provides predictive analysis into silver nanoparticle protein corona formation from physicochemical properties[J]. Environmental Science. Nano, 2018, 5(1): 64-71. doi: 10.1039/C7EN00466D
[23] YAN X L, ZHANG J, RUSSO D P, et al. Prediction of nano–bio interactions through convolutional neural network analysis of nanostructure images[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 19096-19104.
[24] SINGH N, MANSHIAN B, JENKINS G J S, et al. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials[J]. Biomaterials, 2009, 30(23/24): 3891-3914.
[25] DEMIRER G S, ZHANG H, MATOS J L, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nature Nanotechnology, 2019, 14(5): 456-464. doi: 10.1038/s41565-019-0382-5
[26] GU Z L, ZHAO L, LIU S T, et al. Orientational binding of DNA guided by the C2N template[J]. ACS Nano, 2017, 11(3): 3198-3206. doi: 10.1021/acsnano.7b00236
[27] ZHANG X, MA G H, WEI W. Simulation of nanoparticles interacting with a cell membrane: Probing the structural basis and potential biomedical application[J]. NPG Asia Materials, 2021, 13: 52. doi: 10.1038/s41427-021-00320-0
[28] TU Y S, LV M, XIU P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nature Nanotechnology, 2013, 8(8): 594-601. doi: 10.1038/nnano.2013.125
[29] CHONG Y, GE C C, YANG Z X, et al. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating[J]. ACS Nano, 2015, 9(6): 5713-5724. doi: 10.1021/nn5066606
[30] LI Z, ZHANG Y H, CHAN C, et al. Temperature-dependent lipid extraction from membranes by boron nitride nanosheets[J]. ACS Nano, 2018, 12(3): 2764-2772. doi: 10.1021/acsnano.7b09095
[31] XIE X J, HOU Z Y, DUAN G X, et al. Boron nitride nanosheets elicit significant hemolytic activity via destruction of red blood cell membranes[J]. Colloids and Surfaces B:Biointerfaces, 2021, 203: 111765. doi: 10.1016/j.colsurfb.2021.111765
[32] LIU L, ZHANG S T, ZHAO L, et al. Superior compatibility of C2N with human red blood cell membranes and the underlying mechanism[J]. Small, 2018, 14(52): e1803509. doi: 10.1002/smll.201803509
[33] ZHANG S T, LIU L, DUAN G X, et al. Cytotoxicity of C2N originating from oxidative stress instead of membrane stress[J]. ACS Applied Materials & Interfaces, 2019, 11(38): 34575-34585.
[34] MA X Y, ZHU X H, HUANG C X, et al. Molecular mechanisms underlying the role of the puckered surface in the biocompatibility of black phosphorus[J]. Nanoscale, 2021, 13(6): 3790-3799. doi: 10.1039/D0NR08480H
[35] QIAO R, ROBERTS A P, MOUNT A S, et al. Translocation of C60 and its derivatives across a lipid bilayer[J]. Nano Letters, 2007, 7(3): 614-619. doi: 10.1021/nl062515f
[36] SRIDHAR A, SRIKANTH B, KUMAR A, et al. Coarse-grain molecular dynamics study of fullerene transport across a cell membrane[J]. The Journal of Chemical Physics, 2015, 143(2): 024907. doi: 10.1063/1.4926668
[37] SHEN C, ZOU G J, GUO W L, et al. Lipid coating and end functionalization govern the formation and stability of transmembrane carbon nanotube porins[J]. Carbon, 2020, 164: 391-397. doi: 10.1016/j.carbon.2020.04.011
[38] GUPTA R, RAI B. Effect of size and surface charge of gold nanoparticles on their skin permeability: A molecular dynamics study[J]. Scientific Reports, 2017, 7: 45292. doi: 10.1038/srep45292
[39] DELLE PIANE M, POTTHOFF S, BRINKER C J, et al. Molecular dynamics simulations of the silica–cell membrane interaction: Insights on biomineralization and nanotoxicity[J]. The Journal of Physical Chemistry C, 2018, 122(37): 21330-21343. doi: 10.1021/acs.jpcc.8b04537
[40] TANG X F, ZHANG S T, ZHOU H, et al. The role of electrostatic potential polarization in the translocation of graphene quantum dots across membranes[J]. Nanoscale, 2020, 12(4): 2732-2739. doi: 10.1039/C9NR09258G
[41] GUPTA R, BADHE Y, MITRAGOTRI S, et al. Permeation of nanoparticles across the intestinal lipid membrane: Dependence on shape and surface chemistry studied through molecular simulations[J]. Nanoscale, 2020, 12(11): 6318-6333. doi: 10.1039/C9NR09947F
[42] AHAMED M, AKHTAR M J, ALHADLAQ H A, et al. Assessment of the lung toxicity of copper oxide nanoparticles: Current status[J]. Nanomedicine, 2015, 10(15): 2365-2377. doi: 10.2217/nnm.15.72
[43] CHO W S, DUFFIN R, POLAND C A, et al. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: Important implications for nanoparticle testing[J]. Environmental Health Perspectives, 2010, 118(12): 1699-1706. doi: 10.1289/ehp.1002201
[44] LI J J, MURALIKRISHNAN S, NG C T, et al. Nanoparticle-induced pulmonary toxicity[J]. Experimental Biology and Medicine, 2010, 235(9): 1025-1033. doi: 10.1258/ebm.2010.010021
[45] MILLS N L, DONALDSON K, HADOKE P W, et al. Adverse cardiovascular effects of air pollution[J]. Nature Clinical Practice Cardiovascular Medicine, 2009, 6(1): 36-44. doi: 10.1038/ncpcardio1399
[46] ANDUJAR P, SIMON-DECKERS A, GALATEAU-SALLÉ F, et al. Role of metal oxide nanoparticles in histopathological changes observed in the lung of welders[J]. Particle and Fibre Toxicology, 2014, 11: 23. doi: 10.1186/1743-8977-11-23
[47] DASCH J, D'ARCY J. Physical and chemical characterization of airborne particles from welding operations in automotive plants[J]. Journal of Occupational and Environmental Hygiene, 2008, 5(7): 444-454. doi: 10.1080/15459620802122720
[48] LI R B, JI Z X, CHANG C H, et al. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design[J]. ACS Nano, 2014, 8(2): 1771-1783. doi: 10.1021/nn406166n
[49] OH E, LIU R, NEL A, et al. Meta-analysis of cellular toxicity for cadmium-containing quantum dots[J]. Nature Nanotechnology, 2016, 11(5): 479-486. doi: 10.1038/nnano.2015.338
[50] TRINH T X, CHOI J S, JEON H, et al. Quasi-SMILES-based nano-quantitative structure-activity relationship model to predict the cytotoxicity of multiwalled carbon nanotubes to human lung cells[J]. Chemical Research in Toxicology, 2018, 31(3): 183-190. doi: 10.1021/acs.chemrestox.7b00303
[51] LABOUTA H I, ASGARIAN N, RINKER K, et al. Meta-analysis of nanoparticle cytotoxicity via data-mining the literature[J]. ACS Nano, 2019, 13(2): 1583-1594.
[52] CAO J K, PAN Y, JIANG Y T, et al. Computer-aided nanotoxicology: Risk assessment of metal oxide nanoparticles via nano-QSAR[J]. Green Chemistry, 2020, 22(11): 3512-3521. doi: 10.1039/D0GC00933D
[53] SAYES C, IVANOV I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity[J]. Risk Analysis:an Official Publication of the Society for Risk Analysis, 2010, 30(11): 1723-1734. doi: 10.1111/j.1539-6924.2010.01438.x
[54] PAPA E, DOUCET J P, DOUCET-PANAYE A. Linear and non-linear modelling of the cytotoxicity of TiO2 and ZnO nanoparticles by empirical descriptors[J]. SAR and QSAR in Environmental Research, 2015, 26(7/8/9): 647-665.
[55] BASANT N, GUPTA S. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides[J]. Nanotoxicology, 2017, 11(3): 339-350. doi: 10.1080/17435390.2017.1302612
[56] TOROPOVA A P, TOROPOV A A. Nano-QSAR in cell biology: Model of cell viability as a mathematical function of available eclectic data[J]. Journal of Theoretical Biology, 2017, 416: 113-118. doi: 10.1016/j.jtbi.2017.01.012
[57] LUAN F, KLEANDROVA V V, GONZÁLEZ-DÍAZ H, et al. Computer-aided nanotoxicology: Assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach[J]. Nanoscale, 2014, 6(18): 10623-10630. doi: 10.1039/C4NR01285B
[58] WANG W Y, SEDYKH A, SUN H N, et al. Predicting nano-bio interactions by integrating nanoparticle libraries and quantitative nanostructure activity relationship modeling[J]. ACS Nano, 2017, 11(12): 12641-12649. doi: 10.1021/acsnano.7b07093
[59] YU F B, WEI C H, DENG P, et al. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles[J]. Science Advances, 2021, 7(22): eabf4130. doi: 10.1126/sciadv.abf4130
[60] GERNAND J M, CASMAN E A. A meta-analysis of carbon nanotube pulmonary toxicity studies: How physical dimensions and impurities affect the toxicity of carbon nanotubes[J]. Risk Analysis:an Official Publication of the Society for Risk Analysis, 2014, 34(3): 583-597. doi: 10.1111/risa.12109
[61] YAN G Y, HUANG Y N, BU Q, et al. Zinc oxide nanoparticles cause nephrotoxicity and kidney metabolism alterations in rats[J]. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2012, 47(4): 577-588.
[62] WANG F, GAO F, LAN M B, et al. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells[J]. Toxicology in Vitro, 2009, 23(5): 808-815. doi: 10.1016/j.tiv.2009.04.009
[63] SUN F L, WANG X Y, ZHANG P Z, et al. Reproductive toxicity investigation of silica nanoparticles in male pubertal mice[J]. Environmental Science and Pollution Research, 2022, 29(24): 36640-36654. doi: 10.1007/s11356-021-18215-6
[64] MANGANELLI S, LEONE C, TOROPOV A A, et al. QSAR model for predicting cell viability of human embryonic kidney cells exposed to SiO2 nanoparticles[J]. Chemosphere, 2016, 144: 995-1001. doi: 10.1016/j.chemosphere.2015.09.086
[65] YUAN B, WANG P, SANG L, et al. QNAR modeling of cytotoxicity of mixing nano-TiO2 and heavy metals. Ecotoxicology and Environmental Safety. 2021, 15(208): 111634.
[66] LAN Z, YANG W X. Nanoparticles and spermatogenesis: How do nanoparticles affect spermatogenesis and penetrate the blood-testis barrier[J]. Nanomedicine, 2012, 7(4): 579-596. doi: 10.2217/nnm.12.20
[67] SANTONASTASO M, MOTTOLA F, COLACURCI N, et al. In vitro genotoxic effects of titanium dioxide nanoparticles (n-TiO2) in human sperm cells[J]. Molecular Reproduction and Development, 2019, 86(10): 1369-1377. doi: 10.1002/mrd.23134
[68] KUNOVAC A, HATHAWAY Q A, PINTI M V, et al. ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure[J]. Particle and Fibre Toxicology, 2019, 16(1): 24. doi: 10.1186/s12989-019-0310-8
[69] DUGERSHAW B B, AENGENHEISTER L, HANSEN S S K, et al. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials[J]. Particle and Fibre Toxicology, 2020, 17(1): 31. doi: 10.1186/s12989-020-00359-x
[70] BAN Z, ZHOU Q X, SUN A Q, et al. Screening priority factors determining and predicting the reproductive toxicity of various nanoparticles[J]. Environmental Science & Technology, 2018, 52(17): 9666-9676.
[71] ROBINSON R L M, SARIMVEIS H, DOGANIS P, et al. Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning[J]. Beilstein Journal of Nanotechnology, 2021, 12: 1297-1325. doi: 10.3762/bjnano.12.97
[72] LARNER S F, WANG J, GOODMAN J, et al. In vitro neurotoxicity resulting from exposure of cultured neural cells to several types of nanoparticles[J]. Journal of Cell Death, 2017, 10: 1179670717694523.
[73] MARVIN H J P, BOUZEMBRAK Y, JANSSEN E M, et al. Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment. Nanotoxicology, 2017, 11: 123-133.
[74] BASEI G, HRISTOZOV D, LAMON L, et al. Making use of available and emerging data to predict the hazards of engineered nanomaterials by means of in silico tools: A critical review[J]. NanoImpact, 2019, 13: 76-99. doi: 10.1016/j.impact.2019.01.003
[75] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. doi: 10.1613/jair.953
[76] 韩晓丰, 王亮, 宁清, 等. 抗生素和纳米银对大肠杆菌的联合毒性和抗性突变诱导效应[J]. 环境化学, 2023, 42(1): 1-10. doi: 10.1002/etc.5366 HAN X F, WANG L, NING Q, et al. Joint toxicity and resistance mutation-inducing effect of antibiotics and AgNPs on Escherichia coli[J]. Environmental Chemistry, 2023, 42(1): 1-10 (in Chinese). doi: 10.1002/etc.5366