[1] |
金锡鹏, 帕它木, 吴玉霞. 紫外辐射对人体健康的不良影响[J]. 环境与职业医学, 2002, 19(1): 44-45,48.
JIN X P, PA T M, WU Y X. Adverse effects of ultraviolet radiation(UVR) on human being[J]. Journal of Labour Medicine, 2002, 19(1): 44-45,48 (in Chinese).
|
[2] |
张英锋, 范林, 马子川. 防晒剂防晒机理及其应用[J]. 化学世界, 2007, 48(12): 762-765.
ZHANG Y F, FAN L, MA Z C. Sunscreen mechanism and application of sunscreen[J]. Chemical World, 2007, 48(12): 762-765 (in Chinese).
|
[3] |
CASAS-BELTRAN D A, HERNÁNDEZ-PEDRAZA M, ALVARADO-FLORES J. Estimation of the discharge of sunscreens in aquatic environments of the Mexican Caribbean[J]. Environments, 2020, 7(2): 15. doi: 10.3390/environments7020015
|
[4] |
ZHANG H, LI J X, AN Y L, et al. Concentrations of bisphenols, benzophenone-type ultraviolet filters, triclosan, and triclocarban in the paired urine and blood samples from young adults: Partitioning between urine and blood[J]. Chemosphere, 2022, 288(Pt 2): 132563.
|
[5] |
GIOKAS D L, SALVADOR A, CHISVERT A. UV filters: From sunscreens to human body and the environment[J]. TrAC Trends in Analytical Chemistry, 2007, 26(5): 360-374. doi: 10.1016/j.trac.2007.02.012
|
[6] |
EKPEGHERE K I, KIM U J, SUNG-HEE O, et al. Distribution and seasonal occurrence of UV filters in rivers and wastewater treatment plants in Korea[J]. Science of the Total Environment, 2016, 542: 121-128. doi: 10.1016/j.scitotenv.2015.10.033
|
[7] |
TSUI M M P, LEUNG H W, WAI T C, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries[J]. Water Research, 2014, 67: 55-65. doi: 10.1016/j.watres.2014.09.013
|
[8] |
CADENA-AIZAGA M I, MONTESDEOCA-ESPONDA S, TORRES-PADRÓN M E, et al. Organic UV filters in marine environments: An update of analytical methodologies, occurrence and distribution[J]. Trends in Environmental Analytical Chemistry, 2020, 25: e00079. doi: 10.1016/j.teac.2019.e00079
|
[9] |
BRONIOWSKA Ż, TOMCZYK I, GRZMIL P, et al. Benzophenone-2 exerts reproductive toxicity in male rats[J]. Reproductive Toxicology, 2023, 120: 108450. doi: 10.1016/j.reprotox.2023.108450
|
[10] |
BUCK LOUIS G M, KANNAN K, SAPRA K J, et al. Urinary concentrations of benzophenone-type ultraviolet radiation filters and couples' fecundity[J]. American Journal of Epidemiology, 2014, 180(12): 1168-1175. doi: 10.1093/aje/kwu285
|
[11] |
MA J C, WANG Z M, QIN C, et al. Safety of benzophenone-type UV filters: A mini review focusing on carcinogenicity, reproductive and developmental toxicity[J]. Chemosphere, 2023, 326: 138455. doi: 10.1016/j.chemosphere.2023.138455
|
[12] |
KIM S, CHOI K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review[J]. Environment International, 2014, 70: 143-157. doi: 10.1016/j.envint.2014.05.015
|
[13] |
VUCKOVIC D, TINOCO A I, LING L, et al. Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals[J]. Science, 2022, 376(6593): 644-648. doi: 10.1126/science.abn2600
|
[14] |
DANOVARO R, BONGIORNI L, CORINALDESI C, et al. Sunscreens cause coral bleaching by promoting viral infections[J]. Environmental Health Perspectives, 2008, 116(4): 441-447. doi: 10.1289/ehp.10966
|
[15] |
RIZZO L, MALATO S, ANTAKYALI D, et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater[J]. Science of the Total Environment, 2019, 655: 986-1008. doi: 10.1016/j.scitotenv.2018.11.265
|
[16] |
WANG J L, ZHUAN R. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701: 135023. doi: 10.1016/j.scitotenv.2019.135023
|
[17] |
潘继生, 邓家云, 张棋翔, 等. 羟基自由基高级氧化技术应用进展综述[J]. 广东工业大学学报, 2019, 36(2): 70-77,85.
PAN J S, DENG J Y, ZHANG Q X, et al. A review of the application of advanced oxidation technology of hydroxyl radicals[J]. Journal of Guangdong University of Technology, 2019, 36(2): 70-77,85 (in Chinese).
|
[18] |
WANG S Y, WANG X H, CHEN J, et al. Removal of the UV filter benzophenone-2 in aqueous solution by ozonation: Kinetics, intermediates, pathways and toxicity[J]. Ozone:Science & Engineering, 2018, 40(2): 122-132.
|
[19] |
PAN X X, YAN L Q, QU R J, et al. Degradation of the UV-filter benzophenone-3 in aqueous solution using persulfate activated by heat, metal ions and light[J]. Chemosphere, 2018, 196: 95-104. doi: 10.1016/j.chemosphere.2017.12.152
|
[20] |
ZÚÑIGA-BENÍTEZ H, ARISTIZÁBAL-CIRO C, PEÑUELA G A. Heterogeneous photocatalytic degradation of the endocrine-disrupting chemical Benzophenone-3: Parameters optimization and by-products identification[J]. Journal of Environmental Management, 2016, 167: 246-258. doi: 10.1016/j.jenvman.2015.11.047
|
[21] |
ZÚÑIGA-BENÍTEZ H, ARISTIZÁBAL-CIRO C, PEÑUELA G A. Photodegradation of the endocrine-disrupting chemicals benzophenone-3 and methylparaben using Fenton reagent: Optimization of factors and mineralization/biodegradability studies[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59: 380-388. doi: 10.1016/j.jtice.2015.09.004
|
[22] |
VEGA GARZÓN L P, ZÚÑIGA-BENÍTEZ H, PEÑUELA G A. Elimination of benzophenone-1 in water by high-frequency ultrasound[J]. Water, Air, & Soil Pollution, 2021, 232(12): 1-10.
|
[23] |
ZHANG X Y, WEI D B, SUN X F, et al. Free available chlorine initiated Baeyer-Villiger oxidation: A key mechanism for chloroform formation during aqueous chlorination of benzophenone UV filters[J]. Environmental Pollution, 2021, 268(Pt A): 115737.
|
[24] |
BAEYER A, VILLIGER V. Einwirkung des caro'schen reagens auf ketone[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1899, 32(3): 3625-3633. doi: 10.1002/cber.189903203151
|
[25] |
XIAO M, WEI D B, YIN J X, et al. Transformation mechanism of benzophenone-4 in free chlorine promoted chlorination disinfection[J]. Water Research, 2013, 47(16): 6223-6233. doi: 10.1016/j.watres.2013.07.043
|
[26] |
GAGO-FERRERO P, DEMEESTERE K, SILVIA DÍAZ-CRUZ M, et al. Ozonation and peroxone oxidation of benzophenone-3 in water: Effect of operational parameters and identification of intermediate products[J]. Science of the Total Environment, 2013, 443: 209-217. doi: 10.1016/j.scitotenv.2012.10.006
|
[27] |
GONG P, YUAN H X, ZHAI P P, et al. Investigation on the degradation of benzophenone-3 by UV/H2O2 in aqueous solution[J]. Chemical Engineering Journal, 2015, 277: 97-103. doi: 10.1016/j.cej.2015.04.078
|
[28] |
徐彬焜, 余韵, 潘志刚, 等. 紫外活化过硫酸盐工艺降解二苯甲酮-3效果研究[J]. 中国给水排水, 2020, 36(23): 69-74,80.
XU B K, YU Y, PAN Z G, et al. Degradation of benzophenone-3 by UV-activated persulfate process[J]. China Water & Wastewater, 2020, 36(23): 69-74,80 (in Chinese).
|
[29] |
BRODSKY A M, LEVICH V G. Theory of the simplest substitution reactions[J]. The Journal of Chemical Physics, 1973, 58(7): 3065-3081. doi: 10.1063/1.1679618
|
[30] |
LIU W, WEI D B, LIU Q, et al. Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process[J]. Chemosphere, 2016, 154: 491-498. doi: 10.1016/j.chemosphere.2016.04.005
|
[31] |
ZHANG X Y, WEI D B, YU Q, et al. Characterization of UV and chlorine contributions to transformation of 2,3,4-trihydroxybenzophenone under combined UV-chlorine treatment[J]. Chemosphere, 2021, 263: 128310. doi: 10.1016/j.chemosphere.2020.128310
|
[32] |
YANG P Z, KONG D Y, JI Y F, et al. Chlorination and chloramination of benzophenone-3 and benzophenone-4 UV filters[J]. Ecotoxicology and Environmental Safety, 2018, 163: 528-535. doi: 10.1016/j.ecoenv.2018.07.111
|
[33] |
DEBORDE M, von GUNTEN U. Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review[J]. Water Research, 2008, 42(1/2): 13-51.
|
[34] |
XIAO M, WEI D B, LI L P, et al. Formation pathways of brominated products from benzophenone-4 chlorination in the presence of bromide ions[J]. Journal of Environmental Sciences, 2014, 26(12): 2387-2396. doi: 10.1016/j.jes.2014.03.001
|
[35] |
YANG F, WEI D B, XIAO M, et al. The chlorination transformation characteristics of benzophenone-4 in the presence of iodide ions[J]. Journal of Environmental Sciences, 2017, 58: 93-101. doi: 10.1016/j.jes.2017.04.023
|
[36] |
Peijnenburg W J G M. The use of quantitative structure-activity relationships for predicting rates of environmental hydrolysis processes[J]. Pure and Applied Chemistry, 1991, 63(11): 1667-1676. doi: 10.1351/pac199163111667
|
[37] |
SMITHM, MARCH J. Substitution Reactions: Free radicals. march's advanced organic chemistry: reactions, mechanisms, and structure[M]. HobokenJohn: Wiley & Sons, Inc, Sixth Edition 2006, 14: 934-998.
|
[38] |
贾娜, 施海燕, 王鸣华. 2, 4-D丁酯的水解与光解特性研究[J]. 农业环境科学学报, 2011, 30(6): 1082-1086.
JIA N, SHI H Y, WANG M H. Hydrolysis and photolysis of 2, 4-D butylate[J]. Journal of Agro-Environment Science, 2011, 30(6): 1082-1086 (in Chinese).
|
[39] |
沈一君, 彭明国, 徐彬焜, 等. 紫外活化过硫酸盐降解二苯甲酮-4的动力学影响及降解机理与风险评价[J]. 环境科学研究, 2019, 32(1): 174-182.
SHEN Y J, PENG M G, XU B K, et al. Degradation of BP4 by UV-activated persulfate process: Kinetic, mechanism and risk[J]. Research of Environmental Sciences, 2019, 32(1): 174-182 (in Chinese).
|
[40] |
关保川, 许孝良, 王红, 等. 可见光催化脱羧偶联反应研究进展[J]. 有机化学, 2016, 36(7): 1564-1571. doi: 10.6023/cjoc201601012
GUAN B C, XU X L, WANG H, et al. Progress on the decarboxylation coupling reaction mediated by visible light[J]. Chinese Journal of Organic Chemistry, 2016, 36(7): 1564-1571 (in Chinese). doi: 10.6023/cjoc201601012
|
[41] |
LI T, ZHANG X C, ZHANG C M, et al. Thermodynamic and kinetic studies on OH-involved photo-decarboxylation mechanism for waste cooking oils to biofuels[J]. Fuel, 2019, 254: 115665. doi: 10.1016/j.fuel.2019.115665
|
[42] |
ZHANG T, JI Y F, CHOVELON J M, et al. Self-accelerated photodegradation of 2, 4-dihydroxybenzophenone in water: Formation of photoactive products and implications for the transformation of coexisting organic contaminants[J]. ACS ES& T Water, 2022, 2(6): 1065-1072.
|
[43] |
PENG M G, DU E D, LI Z H, et al. Transformation and toxicity assessment of two UV filters using UV/H2O2 process[J]. Science of the Total Environment, 2017, 603/604: 361-369. doi: 10.1016/j.scitotenv.2017.06.059
|
[44] |
LARSON R A, ROCKWELL A L. Chloroform and chlorophenol production by decarboxylation of natural acids during aqueous chlorination[J]. Environmental Science & Technology, 1979, 13(3): 325-329.
|
[45] |
PAN X X, YAN L Q, LI C G, et al. Degradation of UV-filter benzophenone-3 in aqueous solution using persulfate catalyzed by cobalt ferrite[J]. Chemical Engineering Journal, 2017, 326: 1197-1209. doi: 10.1016/j.cej.2017.06.068
|
[46] |
GUO Q R, WEI D B, ZHAO C F, et al. Physical UV-blocker TiO2 nanocomposites elevated toxicity of chemical sunscreen BP-1 under UV irradiation[J]. Chemical Engineering Journal, 2023, 469: 143899. doi: 10.1016/j.cej.2023.143899
|
[47] |
ZÚÑIGA-BENÍTEZ H, PEÑUELA G A. Application of solar photo-Fenton for benzophenone-type UV filters removal[J]. Journal of Environmental Management, 2018, 217: 929-938.
|