[1] |
STERNER R W, ELSER J J, VITOUSEK P M. Ecological Stoichiometry: The biology of elements from molecules to the biosphere[M]. Princeton, Oxford: Princeton University Press, 2017.
|
[2] |
卢建男, 刘凯军, 王瑞雄, 等. 中国荒漠植物-土壤系统生态化学计量学研究进展[J]. 中国沙漠, 2022, 42(2): 173-182.
LU J N, LIU K J, WANG R X, et al. Research advances in stoichiometry of desert plant-soil system in China[J]. Journal of Desert Research, 2022, 42(2): 173-182 (in Chinese).
|
[3] |
曾德慧, 陈广生. 生态化学计量学: 复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1007-1019.
ZENG D H, CHEN G S. Ecological stoichiometry: A science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica, 2005, 29(6): 1007-1019 (in Chinese).
|
[4] |
贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010, 34(1): 2-6.
HE J S, HAN X G. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 2-6 (in Chinese).
|
[5] |
孙德斌, 栗云召, 于君宝, 等. 黄河三角洲湿地不同植被类型下土壤营养元素空间分布及其生态化学计量学特征[J]. 环境科学, 2022, 43(6): 3241-3252.
SUN D B, LI Y Z, YU J B, et al. Spatial distribution and eco-stoichiometric characteristics of soil nutrient elements under different vegetation types in the Yellow River Delta wetland[J]. Environmental Science, 2022, 43(6): 3241-3252 (in Chinese).
|
[6] |
程昊天, 孔涛, 吕刚, 等. 不同林龄樟子松人工林土壤-针叶-微生物生态化学计量及稳态性特征[J]. 生态学杂志, 2022, 41(5): 887-894.
CHENG H T, KONG T, LÜ G, et al. The soil-needle-microbe ecological stoichiometry and homeostasis in Pinus sylvestris var. mongolica plantations with different stand ages[J]. Chinese Journal of Ecology, 2022, 41(5): 887-894 (in Chinese).
|
[7] |
萨仁其力莫格, 荆佳强, 秦洁, 等. 不同利用方式下贝加尔针茅草原植物和土壤的生态化学计量特征[J]. 中国草地学报, 2022, 44(1): 20-29.
SARENQILIMOGE, JING J Q, QIN J, et al. Ecological stoichiometric characteristics of plants and soil in Stipa baicalensis grassland under different utilization modes[J]. Chinese Journal of Grassland, 2022, 44(1): 20-29 (in Chinese).
|
[8] |
YANG Y, LIU B R, AN S S. Ecological stoichiometry in leaves, roots, litters and soil among different plant communities in a desertified region of Northern China[J]. Catena, 2018, 166: 328-338. doi: 10.1016/j.catena.2018.04.018
|
[9] |
田地, 严正兵, 方精云. 植物生态化学计量特征及其主要假说[J]. 植物生态学报, 2021, 45(7): 682-713. doi: 10.17521/cjpe.2020.0331
TIAN D, YAN Z B, FANG J Y. Review on characteristics and main hypotheses of plant ecological stoichiometry[J]. Chinese Journal of Plant Ecology, 2021, 45(7): 682-713 (in Chinese). doi: 10.17521/cjpe.2020.0331
|
[10] |
HE M Z, DIJKSTRA F A, ZHANG K, et al. Influence of life form, taxonomy, climate, and soil properties on shoot and root concentrations of 11 elements in herbaceous plants in a temperate desert[J]. Plant and Soil, 2016, 398(1): 339-350.
|
[11] |
何茂松, 罗艳, 彭庆文, 等. 新疆67种荒漠植物叶碳氮磷计量特征及其与气候的关系[J]. 应用生态学报, 2019, 30(7): 2171-2180.
HE M S, LUO Y, PENG Q W, et al. Leaf C: N: P stoichiometry of 67 plant species and its relations with climate factors across the deserts in Xinjiang, China[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2171-2180 (in Chinese).
|
[12] |
何茂松, 罗艳, 彭庆文, 等. 新疆45种荒漠植物粗根碳、氮、磷计量特征及其与环境的关系[J]. 生态学杂志, 2019, 38(9): 2603-2614.
HE M S, LUO Y, PENG Q W, et al. Carbon, nitrogen and phosphorus stoichiometry in the coarse roots of 45 desert plant species in relation to environmental factors across the deserts in Xinjiang[J]. Chinese Journal of Ecology, 2019, 38(9): 2603-2614 (in Chinese).
|
[13] |
傅立国. 中国高等植物 [M]. 青岛: 青岛出版社, 2003.
FU L G. Higher plants of China[M]. Qingdao, China: Qingdao Publishing House, 2003(in Chinese).
|
[14] |
张兴旺, 张小平, 郭传友, 等. 皖北石灰岩山地青檀种群不同发育阶段的点格局分析[J]. 生态学杂志, 2013, 32(3): 542-550.
ZHANG X W, ZHANG X P, GUO C Y, et al. Point pattern analysis of Pteroceltis tatarinowii population at its different development stages in limestone mountain area of North Anhui, East China[J]. Chinese Journal of Ecology, 2013, 32(3): 542-550 (in Chinese).
|
[15] |
方升佐, 崔同林, 虞木奎. 成土母岩和条龄对青檀檀皮质量的影响[J]. 北京林业大学学报, 2007, 29(2): 122-127.
FANG S Z, CUI T L, YU M K. Effects of soil-forming rocks and sprout ages on the bark quality of Pteroceltis tatarinowii[J]. Journal of Beijing Forestry University, 2007, 29(2): 122-127 (in Chinese).
|
[16] |
方升佐, 李光友, 洑香香. 立地条件对青檀檀皮中矿质元素含量的影响[J]. 林业科学, 2002, 38(1): 8-14.
FANG S Z, LI G Y, FU X X. Effects of site conditions on mineral element contents in the bark of wingceltis (Pteroceltis tatarinowii)[J]. Scientia Silvae Sinicae, 2002, 38(1): 8-14 (in Chinese).
|
[17] |
王友保. 土壤污染生态修复实验技术[M]. 北京: 科学出版社, 2018.
WANG Y B. Experimental technology of ecological restoration of soil pollution[M]. Beijing: Science Press, 2018(in Chinese).
|
[18] |
全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992.
State Soil Survey Office of Agricultural Ministry. Techniques for soil survey of China[M]. Beijing: Agriculture Press, 1992(in Chinese).
|
[19] |
李从娟, 雷加强, 徐新文, 等. 塔克拉玛干沙漠腹地人工植被及土壤CNP的化学计量特征[J]. 生态学报, 2013, 33(18): 5760-5767. doi: 10.5846/stxb201304300872
LI C J, LEI J Q, XU X W, et al. The stoichiometric characteristics of C, N, P for artificial plants and soil in the hinterland of Taklimakan Desert[J]. Acta Ecologica Sinica, 2013, 33(18): 5760-5767 (in Chinese). doi: 10.5846/stxb201304300872
|
[20] |
童冉, 陈庆标, 周本智. 基于生态因子与神经网络的杉木叶片碳氮磷含量预测[J]. 林业科学研究, 2021, 34(6): 56-64.
TONG R, CHEN Q B, ZHOU B Z. Prediction of carbon, nitrogen, and phosphorus contents of Chinese fir based on ecological factors and artificial neural networks[J]. Forest Research, 2021, 34(6): 56-64 (in Chinese).
|
[21] |
ZHAO H, XU L, WANG Q F, et al. Spatial patterns and environmental factors influencing leaf carbon content in the forests and shrublands of China[J]. Journal of Geographical Sciences, 2018, 28(6): 791-801.
|
[22] |
任书杰, 于贵瑞, 陶波, 等. 中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J]. 环境科学, 2007, 28(12): 2665-2673.
REN S J, YU G R, TAO B, et al. Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J]. Environmental Science, 2007, 28(12): 2665-2673 (in Chinese).
|
[23] |
王晶苑, 王绍强, 李纫兰, 等. 中国四种森林类型主要优势植物的C: N: P化学计量学特征[J]. 植物生态学报, 2011, 35(6): 587-595.
WANG J Y, WANG S Q, LI R L, et al. C: N: P stoichiometric characteristics of four forest types’ dominant tree species in China[J]. Chinese Journal of Plant Ecology, 2011, 35(6): 587-595 (in Chinese).
|
[24] |
喻阳华, 李一彤, 王俊贤, 等. 贵州白云岩地区植物群落叶片-凋落物-土壤化学计量与碳氮同位素特征[J]. 生态学报, 2022, 42(8): 3356-3365.
YU Y H, LI Y T, WANG J X, et al. Leaf-litter-soil stoichiometry and carbon and nitrogen isotopes of plant communities in dolomite district in Guizhou Province[J]. Acta Ecologica Sinica, 2022, 42(8): 3356-3365 (in Chinese).
|
[25] |
金宝石, 闫鸿远, 王维奇, 等. 互花米草入侵下湿地土壤碳氮磷变化及化学计量学特征[J]. 应用生态学报, 2017, 28(5): 1541-1549.
JIN B S, YAN H Y, WANG W Q, et al. Changes of soil carbon, nitrogen and phosphorus and stoichiometry characteristics in marsh invaded by Spartina alterniflora[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1541-1549 (in Chinese).
|
[26] |
朱秋莲, 邢肖毅, 张宏, 等. 黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J]. 生态学报, 2013, 33(15): 4674-4682. doi: 10.5846/stxb201212101772
ZHU Q L, XING X Y, ZHANG H, et al. Soil ecological stoichiometry under different vegetation area on loess hillygully region[J]. Acta Ecologica Sinica, 2013, 33(15): 4674-4682 (in Chinese). doi: 10.5846/stxb201212101772
|
[27] |
王涛, 蒙仲举, 党晓宏, 等. 库布齐沙漠典型防护林土壤养分特征[J]. 水土保持学报, 2022, 36(1): 325-331.
WANG T, MENG Z J, DANG X H, et al. Soil nutrient characteristic of typical shelterbelt in Hobq desert[J]. Journal of Soil and Water Conservation, 2022, 36(1): 325-331 (in Chinese).
|
[28] |
王亚东, 魏江生, 周梅, 等. 大兴安岭南段杨桦次生林土壤化学计量特征[J]. 土壤通报, 2020, 51(5): 1056-1064.
WANG Y D, WEI J S, ZHOU M, et al. Soil stoichiometric characteristics in the poplar and birch secondary forests in the southern greater Xing’an Mountains[J]. Chinese Journal of Soil Science, 2020, 51(5): 1056-1064 (in Chinese).
|
[29] |
程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展[J]. 生态学报, 2010, 30(6): 1628-1637.
CHENG B, ZHAO Y J, ZHANG W G, et al. The research advances and prospect of ecological stoichiometry[J]. Acta Ecologica Sinica, 2010, 30(6): 1628-1637 (in Chinese).
|
[30] |
TIAN H Q, CHEN G S, ZHANG C, et al. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data[J]. Biogeochemistry, 2010, 98(1): 139-151.
|
[31] |
冯德枫, 包维楷. 土壤碳氮磷化学计量比时空格局及影响因素研究进展[J]. 应用与环境生物学报, 2017, 23(2): 400-408.
FENG D F, BAO W K. Review of the temporal and spatial patterns of soil C: N: P stoichiometry and its driving factors[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(2): 400-408 (in Chinese).
|
[32] |
寻亚非, 李映雪, 王佳俊, 等. 拉鲁湿地植物和底泥氮磷生态化学计量学特征[J]. 环境化学, 2021, 40(7): 2105-2114. doi: 10.7524/j.issn.0254-6108.2020082901
XUN Y F, LI Y X, WANG J J, et al. Ecological stoichiometry characteristics of nitrogen and phosphorus in plants and sediments in Lhalu wetland[J]. Environmental Chemistry, 2021, 40(7): 2105-2114 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020082901
|
[33] |
王宁, 张有利, 王百田, 等. 山西省油松林生态系统碳氮磷化学计量特征[J]. 水土保持研究, 2015, 22(1): 72-79.
WANG N, ZHANG Y L, WANG B T, et al. Stoichiometry of carbon, nitrogen and phosphorus in Pinus tabulaeformis Carr. Forest ecosystems in Shanxi Province, China[J]. Research of Soil and Water Conservation, 2015, 22(1): 72-79 (in Chinese).
|
[34] |
TESSIER J T, RAYNAL D. Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation[J]. Journal of Applied Ecology, 2003, 40: 523-534. doi: 10.1046/j.1365-2664.2003.00820.x
|
[35] |
HOGAN E J, MINNULLINA G, SMITH R I, et al. Effects of nitrogen enrichment on phosphatase activity and nitrogen: Phosphorus relationships in Cladonia portentosa[J]. The New Phytologist, 2010, 186(4): 911-925. doi: 10.1111/j.1469-8137.2010.03222.x
|
[36] |
魏晨, 张小平, 罗子渝, 等. 兰州市南山和北山3种乔木叶片生态化学计量特征的对比研究[J]. 生态学报, 2021, 41(6): 2460-2470.
WEI C, ZHANG X P, LUO Z Y, et al. A comparative study on foliar stoichiometry traits of three trees in north and south mountains of Lanzhou City[J]. Acta Ecologica Sinica, 2021, 41(6): 2460-2470 (in Chinese).
|
[37] |
POORTER L, BONGERS F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733-1743. doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
|
[38] |
SHIPLEY B, LECHOWICZ M J, WRIGHT I, et al. Fundamental trade-offs generating the worldwide leaf economics spectrum[J]. Ecology, 2006, 87(3): 535-541. doi: 10.1890/05-1051
|
[39] |
张蕾蕾, 钟全林, 程栋梁, 等. 刨花楠不同相对生长速率下林木叶片碳氮磷的适应特征[J]. 生态学报, 2016, 36(9): 2607-2613.
ZHANG L L, ZHONG Q L, CHENG D L, et al. Biomass relative growth rate of Machilus pauhoi in relation to leaf carbon, nitrogen, and phosphorus stoichiometry properties[J]. Acta Ecologica Sinica, 2016, 36(9): 2607-2613 (in Chinese).
|
[40] |
KOERSELMAN W, MEULEMAN A F M. The vegetation N: P ratio: A new tool to detect the nature of nutrient limitation[J]. The Journal of Applied Ecology, 1996, 33(6): 1441. doi: 10.2307/2404783
|
[41] |
刘若璇, 崔东, 赵阳, 等. 伊犁河谷不同生境下大麻根茎叶生态化学计量特征[J]. 环境化学, 2022, 41(5): 1639-1648. doi: 10.7524/j.issn.0254-6108.2020122803
LIU R X, CUI D, ZHAO Y, et al. Ecological stoichiometric characteristics of root, stem and leaf of Cannabis sativa in different habitats of Yili River Valley[J]. Environmental Chemistry, 2022, 41(5): 1639-1648 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020122803
|
[42] |
马丽丽, 朱婷, 兰龙焱, 等. 不同品种油茶果实成熟期叶片养分及磷组分的差异[J]. 中南林业科技大学学报, 2021, 41(11): 82-89.
MA L L, ZHU T, LAN L Y, et al. Differences of nutrients and foliar phosphorus fraction in different Camellia oleifera varieties at fruit maturation period[J]. Journal of Central South University of Forestry & Technology, 2021, 41(11): 82-89 (in Chinese).
|
[43] |
李家湘, 徐文婷, 熊高明, 等. 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素[J]. 植物生态学报, 2017, 41(1): 31-42.
LI J X, XU W T, XIONG G M, et al. Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across Southern China[J]. Chinese Journal of Plant Ecology, 2017, 41(1): 31-42 (in Chinese).
|
[44] |
HEDIN L O. Global organization of terrestrial plant-nutrient interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30): 10849-10850.
|
[45] |
宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. doi: 10.17521/cjpe.2021.0101
SONG Y H, ZHANG P, JIN G Z. Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages[J]. Chinese Journal of Plant Ecology, 2021, 45(9): 952-960 (in Chinese). doi: 10.17521/cjpe.2021.0101
|
[46] |
SISTLA S A, APPLING A P, LEWANDOWSKA A M, et al. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness[J]. Oikos, 2015, 124(7): 949-959. doi: 10.1111/oik.02385
|