[1] ZHANG Q, SUN J, LIU J, et al. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China[J]. Journal of Contaminant Hydrology, 2015, 182: 221-230. doi: 10.1016/j.jconhyd.2015.09.009
[2] CHAMBERS T, DOUWES J, MANNETJE A, et al. Nitrate in drinking water and cancer risk: The biological mechanism, epidemiological evidence and future research[J]. Australian and New Zealand Journal of Public Health, 2022, 46(2): 105-108. doi: 10.1111/1753-6405.13222
[3] 张洁, 杨庆, 肖寒, 等. 北京典型地区地下水硝酸盐氮污染特征解析[J]. 北京水务, 2022, 47(3): 25-30.
[4] 寇馨月, 丁军军, 李玉中, 等. 青岛市农区地下水硝态氮污染来源解析[J]. 环境科学, 2021, 42(7): 3232-3241.
[5] FENG W, WANG C, LEI X, et al. Distribution of nitrate content in groundwater and evaluation of potential health risks: A case study of rural areas in Northern China[J]. International Journal of Environmental Research and Public Health, Multidisciplinary Digital Publishing Institute, 2020, 17(24): 9390.
[6] 黄俊亮, 刘成, 王胜涛, 等. 离子交换工艺对地表水中硝酸盐的去除效能及应用模式[J]. 给水排水, 2021, 57(11): 12-18.
[7] 李洁. 超滤反渗透组合工艺在水厂硝酸盐深度处理中的工程应用[J]. 净水技术, 2021, 40(10): 155-159.
[8] 彭彤. 电解强化生物反硝化固定床去除地下水中硝酸盐的研究[D]. 北京: 中国地质大学(北京), 2016.
[9] 赵爽, 汪晓军, 杨永愿. 化学法处理低浓度硝酸盐氮废水的试验研究[J]. 工业水处理, 2018, 38(1): 79-82.
[10] TAN L, MAO R, SU P, et al. Efficient photochemical denitrification by UV/sulfite system: Mechanism and applications[J]. Journal of Hazardous Materials, 2021, 418: 126448. doi: 10.1016/j.jhazmat.2021.126448
[11] 许贻乔, 吴磊, 郑天怡. 基于紫外光活化甲酸产生二氧化碳自由基的硝态氮还原分析(英文)[J]. Journal of Southeast University(English Edition), 2022, 38(1): 77-84.
[12] 郑天怡. 紫外光诱导甲酸还原水体中硝态氮的研究[D]. 南京: 东南大学, 2020.
[13] CHEN G, HANUKOVICH S, CHEBEIR M, et al. Nitrate removal via a formate radical-unduced photochemical process[J]. Environmental Science & Technology, American Chemical Society, 2019, 53(1): 316-324.
[14] MONTESINOS V N, QUICI N, DESTAILLATS H, et al. Nitric oxide emission during the reductive heterogeneous photocatalysis of aqueous nitrate with TiO2[J]. RSC Advances, 2015, 5(104): 85319-85322. doi: 10.1039/C5RA17914A
[15] 秦宝雨, 唐海, 严律, 等. 紫外活化过硫酸盐/甲酸体系还原水中Cr(Ⅵ)机理及影响因素[J]. 环境工程学报, 2019, 13(9): 2121-2129.
[16] CHEN J, LIU J, ZHOU J, et al. Reductive removal of nitrate by carbon dioxide radical with high product selectivity to form N2 in a UV/H2O2/HCOOH system[J]. Journal of Water Process Engineering, 2020, 33: 101097. doi: 10.1016/j.jwpe.2019.101097
[17] TUGAOEN H O, GARCIA-SEGURA S, HRISTOVSKI K, et al. Challenges in photocatalytic reduction of nitrate as a water treatment technology[J]. Science of the Total Environment, 2017, 599-600: 1524-1551. doi: 10.1016/j.scitotenv.2017.04.238
[18] 许贻乔. 紫外活化甲酸盐还原地下水硝态氮的应用研究[D]. 南京: 东南大学, 2022.
[19] ZENG X, ZHENG Y, CHEN X, et al. Molecular responses of dissolved organic matter to anthropogenic groundwater recharge: Characteristics, transformations, and sensitive molecules[J]. Environmental Science & Technology, American Chemical Society, 2023, 57(20): 7789–7799.
[20] HABIBUL N, CHEN W. Structural response of humic acid upon binding with lead: A spectroscopic insight[J]. Science of the Total Environment, 2018, 643: 479-485. doi: 10.1016/j.scitotenv.2018.06.229
[21] 骆媛媛. 渭河流域DOM的光谱学特性及与聚苯乙烯微塑料的交互作用[D]. 杨凌: 西北农林科技大学, 2021.
[22] 姜瑞雪, 韩冬梅, 宋献方, 等. 再生水补给河道周边水体特征——以北京潮白河顺义段为例[J]. 资源科学, 2020, 42(12): 2419-2433. doi: 10.18402/resci.2020.12.13
[23] 付伟. 基于紫外活化甲酸技术去除四氯化碳的研究[D]. 北京: 中国地质大学(北京), 2020.
[24] 刘成, 徐文蕙, 周卫东, 等. 饮用水中碳酸氢根的意义和控制目标探讨[J]. 净水技术, 2023, 42(8): 1-9.
[25] JIANG W, TANG P, LU S, et al. Comparative studies of H2O2/Fe(II)/formic acid, sodium percarbonate/Fe(II)/formic acid and calcium peroxide/Fe(II)/formic acid processes for degradation performance of carbon tetrachloride[J]. Chemical Engineering Journal, 2018, 344: 453-461. doi: 10.1016/j.cej.2018.03.092
[26] 代朝猛, 刘仟, 段艳平, 等. 活化过一硫酸盐技术降解环境有机污染物的研究进展[J]. 环境科学研究, 2022, 35(1): 141-149.
[27] DAS T N, GHANTY T K, PAL H. Reactions of methyl viologen dication (MV2+) with H atoms in aqueous solution: Mechanism derived from pulse radiolysis measurements and ab initio MO calculations[J]. Journal of Physical Chemistry A, American Chemical Society, 2003, 107(31): 5998-6006.
[28] LI J, MA S, REN K, et al. Studies on the preparation of fly ash-derived Fe-SSZ-13 catalysts and their performance in the catalytic oxidation of NO by H2O2[J]. Molecular Catalysis, 2023, 537: 112920. doi: 10.1016/j.mcat.2023.112920
[29] YANG Q, LIANG X, FU W, et al. Nitrate enhanced the carbon tetrachloride degradation in the UV/HCOOH reductive system[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110578. doi: 10.1016/j.jece.2023.110578