[1] |
林卉, 姜忠群, 冒建华, 等. 人工湿地在农村生活污水处理中的应用及研究进展[J]. 中国农业科技导报, 2020, 22(5): 129-136.
|
[2] |
周日宇, 张弘弢, 周明罗, 等. 垂直潜流人工湿地对农村污水的净化及微生物群落[J]. 安全与环境学报, 2022, 22(6): 3439-3447.
|
[3] |
李慧贤, 熊志鹏, 王倩, 等. 垂直流人工湿地强化地表径流脱氮的研究[J]. 环境科学与技术, 2019, 42(12): 137-143.
|
[4] |
ZHANG D, GERSBERG R M, KEAT T S. Constructed wetlands in China[J]. Ecological Engineering, 2009, 35(10): 1367-1378. doi: 10.1016/j.ecoleng.2009.07.007
|
[5] |
FU G, YU T, NING K, et al. Effects of nitrogen removal microbes and partial nitrification-denitrification in the integrated vertical-flow constructed wetland[J]. Ecological Engineering, 2016, 95: 83-89. doi: 10.1016/j.ecoleng.2016.06.054
|
[6] |
ZHOU X, WANG X, ZHANG H, et al. Enhanced nitrogen removal of low C/N domestic wastewater using a biochar-amended aerated vertical flow constructed wetland[J]. Bioresource Technology, 2017, 241: 269-275. doi: 10.1016/j.biortech.2017.05.072
|
[7] |
刘曦, 陈芳清, 杨丹, 等. 垂直流人工湿地系统中氮去除影响因素的研究[J]. 安徽农业科学, 2015, 43(15): 226-228.
|
[8] |
祝志超, 缪恒锋, 崔健, 等. 组合人工湿地系统对污水处理厂二级出水的深度处理效果[J]. 环境科学研究, 2018, 31(12): 2028-2036.
|
[9] |
王翔, 朱召军, 敏敏, 等. 组合人工湿地用于城市污水处理厂尾水深度处理[J]. 中国给水排水, 2020, 36(6): 97-101.
|
[10] |
谢林花, 吴德礼, 张亚雷. 中国农村生活污水处理技术现状分析及评价[J]. 生态与农村环境学报, 2018, 34(10): 865-870.
|
[11] |
SCHALK T, EFFENBERGER J, JEHMLICH A, et al. Methane oxidation in vertical flow constructed wetlands and its effect on denitrification and COD removal[J]. Ecological Engineering, 2019, 128: 77-88. doi: 10.1016/j.ecoleng.2018.12.029
|
[12] |
VON FELDE K, KUNST S. N- and COD-removal in vertical-flow systems[J]. Water Science and Technology, 1997, 35(5): 79-85. doi: 10.2166/wst.1997.0169
|
[13] |
VYMAZAL J. Removal of nutrients in various types of constructed wetlands[J]. Science of the Total Environment, 2007, 380(1): 48-65.
|
[14] |
张巍, 赵军, 郎咸明, 等. 人工湿地系统微生物去除污染物的研究进展[J]. 环境工程学报, 2010, 4(4): 721-728.
|
[15] |
丁怡, 宋新山, 严登华. 影响潜流人工湿地脱氮主要因素及其解决途径[J]. 环境科学与技术, 2011, 34(S2): 103-106.
|
[16] |
张强, 唐娜. 潜流人工湿地系统中氮去除影响因素研究[J]. 安徽农业科学, 2008(26): 11517-11519.
|
[17] |
YANG P, HOU R, LI D, et al. Nitrogen removal from rural domestic wastewater by subsurface wastewater infiltration system: A review[J]. Process Safety and Environmental Protection, 2022, 159: 309-322. doi: 10.1016/j.psep.2022.01.012
|
[18] |
TANWAR P, NANDY T, UKEY P, et al. Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system[J]. Bioresource Technology, 2008, 99(16): 7630-7635. doi: 10.1016/j.biortech.2008.02.004
|
[19] |
SGROI M, PELISSARI C, ROCCARO P, et al. Removal of organic carbon, nitrogen, emerging contaminants and fluorescing organic matter in different constructed wetland configurations[J]. Chemical Engineering Journal, 2018, 332: 619-627. doi: 10.1016/j.cej.2017.09.122
|
[20] |
ZHANG L, LYU T, ZHANG Y, et al. Impacts of design configuration and plants on the functionality of the microbial community of mesocosm-scale constructed wetlands treating ibuprofen[J]. Water Research, 2018, 131: 228-238. doi: 10.1016/j.watres.2017.12.050
|
[21] |
GRÜNTZIG V, NOLD S C, ZHOU J, et al. Pseudomonas stutzeri nitrite reductase gene abundance in environmental samples measured by real-time PCR[J]. Applied and Environmental Microbiology, 2001.
|
[22] |
LIU H, YANG C, PU W, et al. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor[J]. Chemical Engineering Journal, 2008, 140(1-3): 122-129. doi: 10.1016/j.cej.2007.09.048
|
[23] |
DIONISI H M, LAYTON A C, HARMS G, et al. Quantification of nitrosomonas oligotropha -like ammonia-oxidizing bacteria and nitrospira spp. from full-scale wastewater treatment plants by competitive PCR[J]. Applied and Environmental Microbiology, 2002, 68(1): 245-253. doi: 10.1128/AEM.68.1.245-253.2002
|
[24] |
张星, 林炜铁, 朱雅楠. 硝化细菌中亚硝酸盐氧化还原酶的研究进展[J]. 微生物学通报, 2008(11): 1806-1810.
|
[25] |
MULDER A, VAN DE GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. doi: 10.1111/j.1574-6941.1995.tb00281.x
|
[26] |
HASSAN J, QU Z, BERGAUST L L, et al. Transient accumulation of NO2− and N2O during denitrification explained by assuming cell diversification by stochastic transcription of denitrification genes[J]. PLOS Computational Biology, 2016, 12(1): e1004621. doi: 10.1371/journal.pcbi.1004621
|
[27] |
YUAN Y, YANG B, WANG H, et al. The simultaneous antibiotics and nitrogen removal in vertical flow constructed wetlands: Effects of substrates and responses of microbial functions[J]. Bioresource Technology, 2020, 310: 123419. doi: 10.1016/j.biortech.2020.123419
|
[28] |
LIU S, LI H, KANG J, et al. Improving simultaneous N, P, and C removal and microbial population dynamics in an anaerobic–aerobic–anoxic SBR (A-O-A-SBR) treating municipal wastewater by altering organic loading rate (OLR)[J]. Environmental Technology & Innovation, 2021, 24: 102081.
|
[29] |
ZHANG M, HUANG J C, SUN S, et al. Dissimilatory nitrate reduction processes and corresponding nitrogen loss in tidal flow constructed wetlands[J]. Journal of Cleaner Production, 2021, 295: 126429. doi: 10.1016/j.jclepro.2021.126429
|
[30] |
TANG G, ZHENG X, LI X, et al. Variation of effluent organic matter (EfOM) during anaerobic/anoxic/oxic (A2O) wastewater treatment processes[J]. Water Research, 2020, 178: 115830. doi: 10.1016/j.watres.2020.115830
|
[31] |
ANSOLA G, ARROYO P, SÁENZ DE MIERA L E. Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands[J]. Science of The Total Environment, 2014, 473-474: 63-71. doi: 10.1016/j.scitotenv.2013.11.125
|
[32] |
姚美辰, 段亮, 张恒亮, 等. 辽河保护区人工湿地微生物群落结构及分布规律[J]. 环境工程技术学报, 2019, 9(3): 233-238.
|
[33] |
DAS S, LYLA P S, KHAN S A. Marine microbial diversity and ecology: importance and future perspectives[J]. Current Science, 2006, 90(10): 1325-1335.
|
[34] |
MCILROY S J, KIRKEGAARD R H, DUEHOLM M S, et al. Culture-independent analyses reveal novel anaerolineaceae as abundant primary fermenters in anaerobic digesters treating waste activated sludge[J]. Frontiers in Microbiology, 2017, 8[2023-09-22].
|
[35] |
QIU Y L, SATOSHI H, AKIYOSHI O, et al. Syntrophorhabdus aromaticivorans gen. nov. , sp. nov. , the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen[J]. Applied and Environmental Microbiology, 2008, 74(7): 2051-2058.
|
[36] |
KOSTKA J E, GREEN S J, RISHISHWAR L, et al. Genome sequences for six rhodanobacter strains, isolated from soils and the terrestrial subsurface, with variable denitrification capabilities[J]. Journal of Bacteriology, 2012, 194(16): 4461-4462. doi: 10.1128/JB.00871-12
|
[37] |
AN D S, LEE H G, LEE S T, et al. Rhodanobacter ginsenosidimutans sp nov. , isolated from soil of a ginseng field in South Korea[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59: 691-694.
|
[38] |
THI P N B, KIM Y J, KIM H, et al. Rhodanobacter soli sp nov. , isolated from soil of a ginseng field[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60: 2935-2939.
|
[39] |
MADHAIYAN M, POONGUZHALI S, SARAVANAN V S, et al. Rhodanobacter glycinis sp. nov., a yellow-pigmented gammaproteobacterium isolated from the rhizoplane of field-grown soybean[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_6): 2023-2028.
|
[40] |
PRAKASH O, GREEN S J, JASROTIA P, et al. Rhodanobacter denitrificans sp. nov., isolated from nitrate-rich zones of a contaminated aquifer[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_10): 2457-2462.
|
[41] |
李霜, 沈珈琦, 范伟平. 应用PCR技术快速筛选和鉴定Nitrosomonas属细菌[J]. 土壤学报, 2005(6): 1050-1052.
|