[1] |
PETUS C, CHUST G, GOHIN F, et al. Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery[J]. Continental Shelf Research, 2010, 30(5): 379-392. doi: 10.1016/j.csr.2009.12.007
|
[2] |
NECHAD B, RUDDICK K G, PARK Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters[J]. Remote Sensing of Environment, 2010, 114(4): 854-866. doi: 10.1016/j.rse.2009.11.022
|
[3] |
DING W H, ZHAO J X, QIN B Q, et al. Exploring and quantifying the relationship between instantaneous wind speed and turbidity in a large shallow lake: case study of Lake Taihu in China[J]. Environmental Science and Pollution Research, 2021, 28(13): 16616-16632. doi: 10.1007/s11356-020-11544-y
|
[4] |
LIN X N, WU M, SHAO X X, et al. Water turbidity dynamics using random forest in the Yangtze River Delta Region, China[J]. Science of the Total Environment, 2023, 903: 166511. doi: 10.1016/j.scitotenv.2023.166511
|
[5] |
HOU X J, FENG L, DUAN H T, et al. Fifteen-year monitoring of the turbidity dynamics in large lakes and reservoirs in the middle and lower basin of the Yangtze River, China[J]. Remote Sensing of Environment, 2017, 190: 107-121. doi: 10.1016/j.rse.2016.12.006
|
[6] |
YIN Z Y, LI J S, LIU Y, et al. Water clarity changes in Lake Taihu over 36 years based on Landsat TM and OLI observations[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102457. doi: 10.1016/j.jag.2021.102457
|
[7] |
DOXARAN D, FROIDEFOND J, CASTAING P, et al. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data[J]. Estuarine, Coastal and Shelf Science, 2009, 81(3): 321-332. doi: 10.1016/j.ecss.2008.11.013
|
[8] |
DOGLIOTTI A I, RUDDICK K G, NECHAD B, et al. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters[J]. Remote Sensing of Environment, 2015, 156: 157-168. doi: 10.1016/j.rse.2014.09.020
|
[9] |
MA Y, SONG K S, WEN Z D, et al. Remote sensing of turbidity for lakes in northeast China using Sentinel-2 images with machine learning algorithms[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 9132-9146. doi: 10.1109/JSTARS.2021.3109292
|
[10] |
VANHELLEMONT Q, RUDDICK K. Acolite for Sentinel-2: Aquatic applications of MSI imagery[C]// Proceedings of the 2016 ESA Living Planet Symposium. Prague: 2016: 9-13.
|
[11] |
VANHELLEMONT Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry[J]. Optics Express, 2020, 28(20): 29948. doi: 10.1364/OE.397456
|
[12] |
VANHELLEMONT Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives[J]. Remote Sensing of Environment, 2019, 225: 175-192. doi: 10.1016/j.rse.2019.03.010
|
[13] |
VANHELLEMONT Q, RUDDICK K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications[J]. Remote Sensing of Environment, 2018, 216: 586-597. doi: 10.1016/j.rse.2018.07.015
|
[14] |
TANG R G, SHEN F, PAN Y Q, et al. Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution[J]. Optics Express, 2019, 27(5): 6426. doi: 10.1364/OE.27.006426
|
[15] |
LI P, KE Y H, BAI J H, et al. Spatiotemporal dynamics of suspended particulate matter in the Yellow River Estuary, China during the past two decades based on time-series Landsat and Sentinel-2 data[J]. Marine Pollution Bulletin, 2019, 149: 110518. doi: 10.1016/j.marpolbul.2019.110518
|
[16] |
LUO W, SHEN F, HE Q, et al. Changes in suspended sediments in the Yangtze River Estuary from 1984 to 2020: Responses to basin and estuarine engineering constructions[J]. Science of the Total Environment, 2022, 805: 150381. doi: 10.1016/j.scitotenv.2021.150381
|
[17] |
VANHELLEMONT Q. Daily metre-scale mapping of water turbidity using CubeSat imagery[J]. Optics Express, 2019, 27(20): A1372-A1399. doi: 10.1364/OE.27.0A1372
|
[18] |
唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ: 水面以上测量法[J]. 遥感学报, 2004(1): 37-44. doi: 10.11834/jrs.20040106
|
[19] |
国家环境保护总局. 地表水和污水监测技术规范: HJ/T 91-2002[S]. 北京: 中国环境出版社, 2002.
|
[20] |
国家环境保护局. 水质 悬浮物的测定 重量法: GB 11901-89[S]. 1990.
|
[21] |
LUO W, LI R H, SHEN F, et al. HY-1C/D CZI image atmospheric correction and quantifying suspended particulate matter[J]. Remote Sensing, 2023, 15(2): 386. doi: 10.3390/rs15020386
|
[22] |
SHI K, ZHANG Y L, ZHU G W, et al. Long-term remote monitoring of total suspended matter concentration in Lake Taihu using 250 m MODIS-Aqua data[J]. Remote Sensing of Environment, 2015, 164: 43. doi: 10.1016/j.rse.2015.02.029
|
[23] |
ALLAM M, YAWAR ALI KHAN M, MENG Q. Retrieval of turbidity on a spatio-temporal scale using Landsat 8 SR: A case study of the Ramganga River in the Ganges Basin, India[J]. Applied Sciences, 2020, 10(11): 3702. doi: 10.3390/app10113702
|
[24] |
KRATZER S, KYRYLIUK D, EDMAN M, et al. Synergy of satellite, in situ and modelled data for addressing the scarcity of water quality information for eutrophication assessment and monitoring of Swedish Coastal Waters[J]. Remote Sensing, 2019, 11(17): 2051. doi: 10.3390/rs11172051
|
[25] |
LEE Z P, CARDER K L, ARNONE R A. Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters[J]. Applied Optics, 2002, 41(27): 5755-5772. doi: 10.1364/AO.41.005755
|
[26] |
BALASUBRAMANIAN S V, PAHLEVAN N, SMITH B, et al. Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters[J]. Remote Sensing of Environment, 2020, 246: 111768. doi: 10.1016/j.rse.2020.111768
|
[27] |
LIU H Z, LI Q Q, BAI Y, et al. Improving satellite retrieval of oceanic particulate organic carbon concentrations using machine learning methods[J]. Remote Sensing of Environment, 2021, 256: 112316. doi: 10.1016/j.rse.2021.112316
|
[28] |
GHATKAR J G, SINGH R K, SHANMUGAM P. Classification of algal bloom species from remote sensing data using an extreme gradient boosted decision tree model[J]. International Journal of Remote Sensing, 2019, 40(24): 9412-9438. doi: 10.1080/01431161.2019.1633696
|
[29] |
CAO Z G, MA R H, DUAN H T, et al. A machine learning approach to estimate chlorophyll-a from Landsat-8 measurements in inland lakes[J]. Remote Sensing of Environment, 2020, 248: 111974. doi: 10.1016/j.rse.2020.111974
|
[30] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: Association for Computing Machinery, 2016: 785-794.
|
[31] |
NECHAD B, RUDDICK K G, NEUKERMANS G. Calibration and validation of a generic multisensor algorithm for mapping of turbidity in coastal waters[C]// Remote Sensing of the Ocean, Sea Ice, and Large Water Regions 2009. SPIE, 2009: 7473: 74730H.
|
[32] |
CASTAGNA A, AMADEI MARTÍNEZ L, BOGORAD M, et al. Optical and biogeochemical properties of diverse Belgian inland and coastal waters[J]. Earth System Science Data, 2022, 14(6): 2697-2719. doi: 10.5194/essd-14-2697-2022
|
[33] |
WONG T T. Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation[J]. Pattern Recognition, 2015, 48(9): 2839-2846. doi: 10.1016/j.patcog.2015.03.009
|
[34] |
ZHENG Z B, LI Y M, GUO Y L, et al. Landsat-based long-term monitoring of total suspended matter concentration pattern change in the wet season for Dongting Lake, China[J]. Remote Sensing, 2015, 7(10): 13975-13999. doi: 10.3390/rs71013975
|