[1] KANNEL P R, LEE S, LEE Y-S, et al. Application of water quality indices and dissolved oxygen as indicators for river water classification and urban impact assessment[J]. Environmental Monitoring and Assessment, 2007, 132(1-3): 93-110. doi: 10.1007/s10661-006-9505-1
[2] AY M, KISI O. Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado[J]. Journal of Environmental Engineering, 2012, 138(6): 654-662. doi: 10.1061/(ASCE)EE.1943-7870.0000511
[3] TERRY J, SADEGHIAN A, LINDENSCHMIDT K-E. Modelling dissolved oxygen/sediment oxygen demand under ice in a shallow eutrophic prairie reservoir[J]. Water, 2017, 9(2): 131. doi: 10.3390/w9020131
[4] OSCHLIES A, BRANDT P, STRAMMA L, et al. Drivers and mechanisms of ocean deoxygenation[J]. Nature Geoscience, 2018, 11(7): 467-473. doi: 10.1038/s41561-018-0152-2
[5] SONG S, LI C, SHI X, et al. Under-ice metabolism in a shallow lake in a cold and arid climate[J]. Freshwater Biology, 2019, 64(10): 1710-1720. doi: 10.1111/fwb.13363
[6] D'ASARO E, MCNEIL C. Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats[J]. Journal of Marine Systems, 2008, 74(1-2): 722-736. doi: 10.1016/j.jmarsys.2008.02.006
[7] HOUSER J N, BARTSCH L A, RICHARDSON W B, et al. Ecosystem metabolism and nutrient dynamics in the main channel and backwaters of the Upper Mississippi River[J]. Freshwater Biology, 2015, 60(9): 1863-1879. doi: 10.1111/fwb.12617
[8] HAMPTON S E, SCHEUERELL M D, CHURCH M J, et al. Long-term perspectives in aquatic research[J]. Limnology and Oceanography, 2018, 64(S1): S2-S10.
[9] WOOLWAY R I, MERCHANT C J. Worldwide alteration of lake mixing regimes in response to climate change[J]. Nature Geoscience, 2019, 12(4): 271-276. doi: 10.1038/s41561-019-0322-x
[10] 杨凡, 纪道斌, 王丽婧, 等. 三峡水库汛后蓄水期典型支流溶解氧与叶绿素a垂向分布特征[J]. 环境科学, 2020, 41(5): 2107-2115.
[11] HUANG Y Q, CAI D S, LI M Q, et al. Influence of changes in dissolved oxygen content on fish behavioral trajectories during water eutrophication[J]. Applied Ecology and Environmental Research, 2019, 17(1): 653-666. doi: 10.15666/aeer/1701_653666
[12] WANG F, LI X, TANG X, et al. The seas around China in a warming climate[J]. Nature Reviews Earth & Environment, 2023, 4(8): 535-551.
[13] ZHI W, KLINGLER C, LIU J, et al. Widespread deoxygenation in warming rivers[J]. Nature Climate Change, 2023, 13(10): 1105-1113. doi: 10.1038/s41558-023-01793-3
[14] JANE S F, HANSEN G J A, KRAEMER B M, et al. Widespread deoxygenation of temperate lakes[J]. Nature, 2021, 594(7861): 66-70. doi: 10.1038/s41586-021-03550-y
[15] BREITBURG D, LEVIN L A, OSCHLIES A, et al. Declining oxygen in the global ocean and coastal waters[J]. Science, 2018, 359(6371): 46.
[16] 曹阳, 温胜芳, 王晓, 等. 白洋淀沉积物耗氧速率及氧亏效应研究[J]. 环境科学学报, 2022, 42(2): 240-248.
[17] ZHOU X H, WANG X Y, SHI H C. Inhibitory effect of nitrobenzene on oxygen demand in lake sediments[J]. Journal of Environmental Sciences, 2012, 24(5): 934-939. doi: 10.1016/S1001-0742(11)60848-6
[18] HU W F, LO W, CHUA H, et al. Nutrient release and sediment oxygen demand in a eutrophic land-locked embayment in Hong Kong[J]. Environment International, 2001, 26(5-6): 369-375. doi: 10.1016/S0160-4120(01)00014-9
[19] 范傲翔, 王智鹏, 王超, 等. 南水北调中线总干渠水体耗氧特征及成因[J]. 环境科学学报, 2020, 40(3): 871-879.
[20] 武士蓉, 徐梦佳, 赵彦伟, 等. 白洋淀湿地水质与水生物相关性研究[J]. 环境科学学报, 2013, 33(11): 3160-3165.
[21] 李必才, 何连生, 杨敏, 等. 白洋淀底泥重金属形态及竖向分布[J]. 环境科学, 2012, 33(7): 2376-2383.
[22] 文艳, 单保庆, 张文强. 低温期浅水湖泊氮的分布及无机氮扩散通量: 以白洋淀为例[J]. 环境科学, 2021, 42(6): 2839-2847.
[23] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
[24] 陈明, 孙洁梅, 李敏. 水体中藻类叶绿素a提取方法的比较[J]. 环境监测管理与技术, 2017, 29(4): 57-59. doi: 10.3969/j.issn.1006-2009.2017.04.014
[25] 中华人民共和国生态环境部. 固体废物 有机质的测定 灼烧减量法: HJ 761-2015[S]. 北京: 中国环境科学出版社, 2015.
[26] ASPILA K I, AGEMIAN H, CHAU A S Y. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments[J]. The Analyst, 1976, 101(1200): 187-197. doi: 10.1039/an9760100187
[27] CLEVELAND R B, CLEVELAND W S, MCRAE J E, et al. STL: A seasonal-trend decomposition[J]. Journal of Official Statistics, 1990, 6(1): 3-73.
[28] SELLINGER C E, STOW C A, LAMON E C, et al. Recent water level declines in the Lake Michigan-Huron system[J]. Environmental Science & Technology, 2008, 42(2): 367-373.
[29] GARCíA-MOZO H, OTEROS J A, GALáN C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain[J]. Science of the Total Environment, 2016, 548: 221-228.
[30] WANG F, WANG X, ZHAO Y, et al. Long-term periodic structure and seasonal-trend decomposition of water level in Lake Baiyangdian, Northern China[J]. International Journal of Environmental Science and Technology, 2013, 11(2): 327-338.
[31] CARPENTER S R, CARACO N F, CORRELL D L, et al. Nonpoint pollution of surface waters with phosphorus and nitrogen[J]. Ecological Applications, 1998, 8(3): 559-568. doi: 10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
[32] HONG M H, MA Z L, WANG X Y, et al. Effects of light intensity and ammonium stress on photosynthesis in Sargassum fusiforme seedlings[J]. Chemosphere, 2021, 273.
[33] MOSLEY L M, WALLACE T, RAHMAN J, et al. An integrated model to predict and prevent hypoxia in floodplain-river systems[J]. Journal of Environmental Management, 2021, 286: 112213. doi: 10.1016/j.jenvman.2021.112213
[34] VAN DER LEE G H, VERDONSCHOT R C M, KRAAK M H S, et al. Dissolved oxygen dynamics in drainage ditches along a eutrophication gradient[J]. Limnologica, 2018, 72: 28-31. doi: 10.1016/j.limno.2018.08.003
[35] SALK K R, VENKITESWARAN J J, COUTURE R M, et al. Warming combined with experimental eutrophication intensifies lake phytoplankton blooms[J]. Limnology and Oceanography, 2022, 67(1): 147-158. doi: 10.1002/lno.11982
[36] VIONE D, MINERO C, CARENA L. Fluorophores in surface freshwaters: importance, likely structures, and possible impacts of climate change[J]. Environmental Science:Processes & Impacts, 2021, 23(10): 1429-1442.
[37] 汤楠. 洞庭湖芦苇腐解过程对周边水体水质影响的研究[D]. 湖南: 湘潭大学, 2021.
[38] WENDT-POTTHOFF K, KOSCHORRECK M. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina[J]. Microbial Ecology, 2002, 43(1): 92-106. doi: 10.1007/s00248-001-1030-8
[39] ZHANG L, SHEN Q S, HU H Y, et al. Impacts of corbicula fluminea on oxygen uptake and nutrient fluxes across the sediment–water interface[J]. Water, Air, & Soil Pollution, 2011, 220(1-4): 399-411.
[40] WALLACE T A, GANF G G, BROOKES J D. Sediment oxygen demand in a constructed lake in south-eastern Australia[J]. Journal of Environmental Management, 2016, 181: 449-454. doi: 10.1016/j.jenvman.2016.07.008
[41] 王豆豆. 白洋淀沉水植物分布特征、净水效果及重建策略[D]. 北京: 北京林大学, 2019.
[42] 高永强, 高磊, 朱礼鑫, 等. 长江口及其邻近海域悬浮颗粒物浓度和粒径的时空变化特征[J]. 海洋学报, 2018, 40(3): 62-73.
[43] OLIVER B G, CHARLTON M N. Chlorinated organic contaminants on settling particulates in the Niagara River vicinity of Lake Ontario [Canada][J]. Environmental Science & Technology, 1984, 18(12): 903-908.
[44] SCHELLENBERG K, LEUENBERGER C, SCHWARZENBACH R P. Sorption of chlorinated phenols by natural sediments and aquifer materials[J]. Environmental Science & Technology, 1984, 18(9): 652-657.
[45] 于海燕, 周斌, 胡尊英, 等. 生物监测中叶绿素a浓度与藻类密度的关联性研究[J]. 中国环境监测, 2009, 25(6): 40-43. doi: 10.3969/j.issn.1002-6002.2009.06.012
[46] BOYNTON W R, MURRAY L, HAGY J D, et al. A comparative analysis of eutrophication patterns in a temperate coastal lagoon[J]. Estuaries, 1996, 19: 408-421. doi: 10.2307/1352459
[47] CHEN X M, PENG L, WANG J C, et al. Determination of chemical oxygen demand in water samples using gas-phase molecular absorption spectrometry[J]. Analytical Sciences, 2020, 36(7): 841-846. doi: 10.2116/analsci.19P444
[48] LI X D, CHEN Y H, LIU C, et al. Eutrophication and related antibiotic resistance of enterococci in the Minjiang river, China[J]. Microbial Ecology, 2020, 80(1): 1-13. doi: 10.1007/s00248-019-01464-x
[49] OBERTEGGER U, OBRADOR B, FLAIM G. Dissolved oxygen dynamics under ice: Three winters of high-frequency data from Lake Tovel, Italy[J]. Water Resources Research, 2017, 53(8): 7234-7246. doi: 10.1002/2017WR020599
[50] KLAUS M, KARLSSON J, SEEKELL D. Tree line advance reduces mixing and oxygen concentrations in arctic-alpine lakes through wind sheltering and organic carbon supply[J]. Global Change Biology, 2021, 27(18): 4238-4253. doi: 10.1111/gcb.15660