[1] |
住房城乡建设部. 进一步明确海绵城市建设工作有关要求[Z]. 2022-04-30.
|
[2] |
住房城乡建设部. 海绵城市建设技术指南(试行)——低影响开发雨水系统构建[Z]. 2014-11-03.
|
[3] |
张媛, 谢天, 王美娥. 小尺度水平上植被格局对城市绿地土壤污染物累积的影响[J]. 环境工程学报, 2020, 14(5): 1343-1353. doi: 10.12030/j.cjee.201910088
|
[4] |
胡作鹏, 刘志强, 彭森, 等. 低影响开发(LID)雨水径流控制效果模拟[J]. 环境工程学报, 2016, 10(7): 3956-3960. doi: 10.12030/j.cjee.201501215
|
[5] |
杨世蜀, 王海洋. 人工生物蓄水过滤系统对雨水的滞留与过滤功效[J]. 环境工程学报, 2015, 9(5): 2259-2264. doi: 10.12030/j.cjee.20150538
|
[6] |
孙丹焱, 郑涛, 徐竟成, 等. 城市绿地土壤渗透性改良对雨水径流污染的削减效果及去除规律[J]. 环境工程学报, 2019, 13(2): 372-380. doi: 10.12030/j.cjee.201808122
|
[7] |
余雪花, 陈垚, 任萍萍, 等. 生物滞留系统植物筛选与综合评价[J]. 环境工程学报, 2019, 13(7): 1634-1644. doi: 10.12030/j.cjee.201811044
|
[8] |
王彤. 下凹式绿地等LID技术及城市雨水利用工程的应用研究[D]. 天津大学, 2016.
|
[9] |
俞绍武, 丁年, 任心欣, 等. 城市下凹式绿地雨水蓄渗利用技术的探讨[J]. 给水排水, 2010, 46(S1): 116-118. doi: 10.3969/j.issn.1002-8471.2010.z1.030
|
[10] |
程江, 徐启新, 杨凯, 等. 下凹式绿地雨水渗蓄效应及其影响因素[J]. 给水排水, 2007(5): 45-49. doi: 10.3969/j.issn.1002-8471.2007.05.012
|
[11] |
焦胜, 贺颖鑫, 罗碧虹, 等. 基于雨水年径流控制的下凹式绿地面积比研究[J]. 给水排水, 2016, 52(S1): 66-72.
|
[12] |
徐硕昌, 刘德仁, 王旭, 等. 重塑非饱和黄土浸水入渗规律的模型试验研究[J]. 水利水运工程学报, 2023(1): 140-148. doi: 10.12170/20210903001
|
[13] |
CHEN P, WEI C F, MA T T, et al. Analytical model of soil-water characteristics considering the effect of air entrapment[J]. International Journal of Geomechanics, 2015, 15(6): 04014102. doi: 10.1061/(ASCE)GM.1943-5622.0000462
|
[14] |
李承成. 土中的气对非饱和黄土渗流特性影响的研究[D]. 兰州交通大学, 2018.
|
[15] |
刘欢, 甘永德, 贾仰文, 等. 考虑空气阻力影响的流域水文过程模拟研究[J]. 自然资源学报, 2018, 33(8): 1463-1474.
|
[16] |
LOIZEAU S, ROSSIER Y, GAUDET P J, et al. Water infiltration in an aquifer recharge basin affected by temperature and air entrapment[J]. Journal of Hydrology and Hydromechanics, 2017, 65(3): 222-233. doi: 10.1515/johh-2017-0010
|
[17] |
吴争光. 封闭气泡对近饱和土体渗透性影响的试验研究[D]. 三峡大学, 2010.
|
[18] |
张振华, 谢恒星, 刘继龙, 等. 气相阻力与土壤容重对一维垂直入渗影响的定量分析[J]. 水土保持学报, 2005(4): 36-39. doi: 10.3321/j.issn:1009-2242.2005.04.009
|
[19] |
REN X W, HONG N, LI L F, et al. Effect of infiltration rate changes in urban soils on stormwater runoff process[J]. Geoderma, 2020, 363: 114158. doi: 10.1016/j.geoderma.2019.114158
|
[20] |
张宇恒, 张莉, 张秀娟, 等. 退化程度对玛沁高寒草甸植物群落及土壤持水能力的影响[J]. 草业科学, 2022, 39(2): 235-246.
|
[21] |
刘长殿, 康剑伟. 土体充气阻渗机理分析[J]. 低温建筑技术, 2013, 35(5): 97-100. doi: 10.3969/j.issn.1001-6864.2013.05.039
|
[22] |
刘刚, 童富果, 习念念, 等. 通气和封气条件下降雨对粘性土入渗速率、含水率及孔隙压力的影响试验[J]. 水电能源科学, 2015, 33(12): 19-21.
|
[23] |
宫永伟, 张爱玲, 刘浩悦, 等. 下沉式绿地积水不利影响及促渗排空方法研究[J]. 给水排水, 2018, 54(5): 36-38. doi: 10.3969/j.issn.1002-8471.2018.05.009
|
[24] |
路明杰, 郭向红, 雷涛, 等. 不同灌溉方式下苹果园土壤氧气分布特征研究[J]. 节水灌溉, 2020(4): 6-10. doi: 10.3969/j.issn.1007-4929.2020.04.002
|
[25] |
余娅婷, 王大浩, 董洁, 等. 重塑非饱和黄土中水-气两相运移规律研究[J]. 水资源与水工程学报, 2020, 31(3): 228-232.
|
[26] |
SIEMENS A G, PETERS B S, TAKE A W. Comparison of confined and unconfined infiltration in transparent porous media[J]. Water Resources Research, 2013, 49(2): 851-863. doi: 10.1002/wrcr.20101
|
[27] |
刘炜杰, 马建刚. 土内气阻对土壤入渗的影响研究进展[J]. 亚热带水土保持, 2023, 35(1): 27-34. doi: 10.3969/j.issn.1002-2651.2023.01.008
|
[28] |
周健民, 沈仁芳. 土壤学大辞典[M]. 科学出版社, 2013.
|
[29] |
沈铁元, 彭涛, 殷志远, 等. 包气带气压计算及其影响入渗的模拟[J]. 沙漠与绿洲气象, 2012, 6(2): 8-12. doi: 10.3969/j.issn.1002-0799.2012.02.003
|
[30] |
李秀娟. 裂缝及古土壤影响下黄土包气带水-气运移规律研究[D]. 长安大学, 2018.
|
[31] |
CHEN K P, WEI Y B, WU J C. The effect of infiltration flux on air counterflow in a 2-D confined sand chamber[J]. Journal of Hydrology, 2019, 571: 619-626. doi: 10.1016/j.jhydrol.2019.01.078
|
[32] |
SAKAGUCHI A, NISHIMURA T, KATO M. The Effect of entrapped air on the quasi-saturated soil hydraulic conductivity and comparison with the unsaturated hydraulic conductivity[J]. Vadose Zone Journal, 2005, 4(1): 139-144. doi: 10.2136/vzj2005.0139
|
[33] |
梁爱民, 邵龙潭. 土壤中空气对土结构和入渗过程的影响[J]. 水科学进展, 2009, 20(4): 502-506. doi: 10.3321/j.issn:1001-6791.2009.04.008
|
[34] |
李永宁, 王忠禹, 王兵, 等. 黄土丘陵区典型植被土壤物理性质差异及其对导水特性影响[J]. 水土保持学报, 2019, 33(6): 176-181+189.
|
[35] |
于珍珍, 王宏轩, 邹华芬, 等. 加气灌溉下红壤土呼吸速率变化及其与土壤水氧的关系[J]. 热带作物学报, 2022, 43(1): 110-118. doi: 10.3969/j.issn.1000-2561.2022.01.015
|
[36] |
李仁海, 周志超, 李杰彪, 等. 甘肃北山地区典型沟谷包气带土壤渗透特征研究[J]. 土壤通报, 2020, 51(6): 1380-1385.
|