[1] 方芳, 韩洪军, 崔立明, 等. 煤化工废水“近零排放”技术难点解析[J]. 环境影响评价, 2017, 39(2): 9-13.
[2] 刘晓琴, 徐玙琢, 焦慧玲, 等. 煤化工含盐废水处理技术的应用分析[J]. 山西化工, 2023, 43(2): 167-169.
[3] XIONG R, WEI C. Current status and technology trends of zero liquid discharge at coal chemical industry in China[J]. Journal of Water Process Engineering, 2017, 19: 346-351. doi: 10.1016/j.jwpe.2017.09.005
[4] 工信部等六部门发布《工业水效提升行动计划》[J]. 中华纸业, 2022, 43(13): 1-4.
[5] 齐亚兵, 张思敬, 杨清翠. 煤化工高含盐废水处理技术研究进展[J]. 应用化工, 2021, 50(8): 2303-2308.
[6] YOGARAJACHARI R M, PUTTASRINIVASA C S, KACHINTAYA C K, et al. Chapter 10-Future directions in the global rise of Zero Liquid Discharge (ZLD) for wastewater management[J]. Concept of Zero Liquid Discharge, 2023: 227-244.
[7] CHEN F, ZHANG Z, ZENG F, et al. Pilot-scale treatment of hypersaline coal chemical wastewater with zero liquid discharge[J]. Desalination, 2021, 518: 115303. doi: 10.1016/j.desal.2021.115303
[8] ZHENG L B, YU D W, WANG G, et al. Characteristics and formation mechanism of membrane fouling in a ful-scale RO waste water reclamation process: Membrane autopsy and fouling characterization[J]. Journal of Membrane Science, 2018, 563: 843-856. doi: 10.1016/j.memsci.2018.06.043
[9] LI Y, LI M, XIAO K, et al. Reverse osmosis membrane autopsy in coal chemical wastewater treatment: Evidences of spatially heterogeneous fouling and organic-inorganic synergistic effect[J]. Journal of Cleaner Production, 2020, 246: 118964. doi: 10.1016/j.jclepro.2019.118964
[10] 孙钰林, 刘凤洋, 武斌斌, 等. 煤化工高盐废水处理系统运行与优化研究[J]. 工业水处理, 2022, 42(7): 192-198.
[11] CHEN K L, SONG L, ONG S L, et al. The development of membrane fouling in full-scale RO processes[J]. Journal of Membrane Science, 2004, 232(1): 63-72.
[12] 排力哈提·塔依尔, 徐东耀, 王建国, 等. 循环水排污水反渗透系统中溶解性有机物特征及其影响研究[J]. 环境科学学报, 2023, 43(4): 327-338.
[13] 张秀龙. 煤化工废水中氨氮去除方法的研究及工程应用[J]. 化工管理, 2020(3): 53-54.
[14] ISLAM M A, JEONG J Y, KIM E J, et al. Multielemental characterization of chicken breasts from conventional and sustainable farms by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS)[J]. Analytical Letters, 2023, 56(5): 744-757. doi: 10.1080/00032719.2022.2101058
[15] BARASHA D, DANA B, AMMAR A H, et al. Study of propylene glycol thermal degradation by batch distillation process and analysis using ion chromatography[J]. Petroleum Science and Technology, 2022, 40(24): 1-17.
[16] NUR F D, NUR U M, NURI A. The comparison of several lipid extraction methods on infant formula for 3-monochloropropanediol esters and glycidyl esters analysis[J]. International Journal of Food Science & Technology, 2021, 56(9): 4730-4737.
[17] 张锡云, 张佳甲, 张慧云, 等. 自建Lowry法测定B型肉毒神经毒素蛋白质含量[J]. 现代食品, 2023, 29(3): 189-192.
[18] LAN C, CHAO G, QING Z, et al. Differentiation of multilayered automotive coatings with Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscope/energy dispersive Xray spectrometer[J]. Pigment & Resin Technology, 2024, 53(1): 36-43.
[19] YANNICK N, DJITIEU D A D, POUNGOUE H S S, et al. Probing the reactivity of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) with metal cations and acids in acetonitrile by electrochemistry and UV-Vis spectroscopy[J]. Physical chemistry chemical physics : PCCP, 2023, 25(6): 5282-5290.
[20] ZHU W, YANG R, ZHAO N, et al. Determination of phenolic compounds in water using a multivariate statistical analysis method combined with three-dimensional fluorescence spectroscopy[J]. RSC advances, 2024, 14(4): 2235-2242. doi: 10.1039/D3RA06917F
[21] 吕晶晶, 龚为进, 窦艳艳, 等. PARAFAC和FRI解析ISI中DOM分布[J]. 中国环境科学, 2019, 39(5): 2039-2047.
[22] 郑利兵, 焦赟仪, 陈梅雪, 等. 磁混凝工艺处理市政废水中的污染物去除特征研究[J]. 环境科学学报, 2020, 40(6): 2118-2127.
[23] LI P, HUR J. Utilization of UV-vis spectroscopy and related data analyses for dissolved organic matter (DOM) studies: A review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(3): 131-154. doi: 10.1080/10643389.2017.1309186
[24] JACQUIN C, LESAGE G, TRABER J, et al. Three-dimensional excitation and emission matrix fluorescence (3DEEM) for quick and pseudo-quantitative determination of protein- and humic-like substances in full-scale membrane bioreactor (MBR)[J]. Water Research, 2017, 118: 82-92. doi: 10.1016/j.watres.2017.04.009
[25] 姚璐璐, 涂响, 于会彬, 等. 三维荧光区域积分评估城市污水中溶解性有机物去除[J]. 环境工程学报, 2013, 7(2): 411-416.
[26] YANG W L, WANG J C, HUA M, et al. Characterization of effluent organic matter from different coking wastewater treatment plants[J]. Chemosphere, 2018, 203: 68-75. doi: 10.1016/j.chemosphere.2018.03.167
[27] 李飞, 徐敏. 海州湾表层沉积物重金属的来源特征及风险评价[J]. 环境科学, 2014, 35(3): 1035-1040.
[28] BORG H, JONSSON P. Large-scale metal distribution in Baltic Sea sediments[J]. Marine Pollution Bulletin, 1996, 32(1): 8-21. doi: 10.1016/0025-326X(95)00103-T
[29] 陈昭宇. 三峡库区城镇化背景下河流溶解性有机质特征及降解规律研究[D]. 中国科学院大学(中国科学院重庆绿色智能技术研究院), 2020.
[30] PARK Y M, YEON K M, PARK C H. Silica treatment technologies in reverse osmosis for industrial desalination: A review[J]. Environmental Engineering Research, 2020, 25(6): 819-829. doi: 10.4491/eer.2019.353
[31] 郑利兵, 吴振军, 张鹤清, 等. 介质加载混凝过程中磷和溶解性有机物的去除特征及混凝机理[J]. 环境工程学报, 2020, 14(12): 3352-3362. doi: 10.12030/j.cjee.201912134
[32] 杨银, 丰桂珍, 江立文. 不同水源原水溶解性有机物特性分析[J]. 生态与农村环境学报, 2021, 37(6): 801-807.
[33] 段一明, 张戈, 于大涛. 辽东湾西北部海域沉积物重金属含量分析及污染评价[J]. 海洋开发与管理, 2020, 37(1): 39-45.
[34] 李晨璐, 郭雅妮, 李玉林, 等. 煤化工废水反渗透处理系统的运行效果及膜污染分析[J]. 环境科学学报, 2021, 41(9): 3464-3477.
[35] 张文浩, 赵铎霖, 王晓毓, 等. 太白山自然保护区水体CDOM吸收与三维荧光特征[J]. 环境科学, 2020, 41(11): 4958-4969.
[36] XIANG Y Y, ZHOU J S, LIN B W, et al. Exergetic evaluation of renewable light olefins production from biomass via synthetic methanol[J]. Applied Energy, 2015, 157: 499-507. doi: 10.1016/j.apenergy.2015.05.039
[37] 郑利兵, TITUS C, 钟慧, 等. 斯里兰卡CKDu病区地下水源饮用水关键问题及解决策略[J]. 环境工程学报, 2020, 14(8): 2100-2111.
[38] TAN Y J, SUN L J, LI B T, et al. Fouling characteristics and fouling control of reverse osmosis membranes for desalination of dyeing wastewater with high chemical oxygen demand[J]. Desalination, 2017, 419: 1-7. doi: 10.1016/j.desal.2017.04.029
[39] YANG Y H, ZHANG D H. Concentration-effect on the fluorescence-spectra of humic substances[J]. Communications in Soil Science and Plant Analysis, 1995, 26(15-16): 2333-2349. doi: 10.1080/00103629509369451
[40] 付嘉琦, 桂双林, 易其臻, 等. 基于三维荧光及平行因子分析的南昌市某河可溶性有机物溯源及治理策略[J]. 环境工程学报, 2023, 17(11): 3487-3496. doi: 10.12030/j.cjee.202305120
[41] 张万辉, 韦朝海, 吴超飞, 等. 焦化废水中有机物的识别、污染特性及其在废水处理过程中的降解[J]. 环境化学, 2012, 31(10): 1480-1486.
[42] RODRÍGUEZ F J, SCHLENGER P, García-Valverde M. Monitoring changes in the structure and properties of humic substances following ozonation using UV-Vis, FTIR and NMR techniques[J]. Science of the Total Environment, 2016, 541: 623-637. doi: 10.1016/j.scitotenv.2015.09.127
[43] WEI J, ZHAO X H, ZHAO Y Y, et al. Variation in spectral characteristics of dissolved organic matter derived from rape straw of plants grown in Se-amended soil[J]. Journal of Integrative Agriculture, 2020, 19(7): 1876-1884. doi: 10.1016/S2095-3119(19)62867-4
[44] 杨梦亚, 杨睿, 林发利, 等. 医疗废水处理前后溶解性有机物的光谱特征分析[J]. 环境化学, 2022, 41(12): 4106-4117.
[45] 陈滢伊, 司友涛, 鲍勇, 等. 隔离降雨对亚热带米槠天然林土壤可溶性有机质数量及光谱学特征的影响[J]. 应用生态学报, 2019, 30(9): 2964-2972.
[46] LI D Y, LIN W C, SHAO R P, et al. Interaction between humic acid and silica in reverse osmosis membrane fouling process: A spectroscopic and molecular dynamics insight[J]. Water Research, 2021, 206: 117773. doi: 10.1016/j.watres.2021.117773
[47] 钱锋, 吴婕赟, 于会彬, 等. 多元数理统计法研究太子河本溪城市段水体DOM紫外光谱特征[J]. 环境科学, 2016, 37(10): 3806-3812.
[48] SHEIKHOLESLAMI R, TAN S. Effects of water quality on silica fouling of desalination plants[J]. Desalination, 1999, 126(1): 267-280.
[49] 李玉林. 煤化工废水零排放系统反渗透问题分析与优化[J]. 膜科学与技术, 2021, 41(2): 104-109.
[50] QUAY A N, TONG T Z, Hashmi S M, et al. Combined organic fouling and inorganic scaling in reverse osmosis: Role of protein-silica interactions[J]. Environmental Science & Technology, 2018, 52(16): 9145-9153.
[51] LI L, WANG Y, ZHANG W J, et al. New advances in fluorescence excitation-emission matrix spectroscopy for the characterization of dissolved organic matter in drinking water treatment: A review[J]. Chemical Engineering Journal, 2020, 381: 122676. doi: 10.1016/j.cej.2019.122676
[52] 张广远. HERO工艺在煤化工废水处理与回用中的应用[J]. 工业水处理, 2016, 36(12): 112-114. doi: 10.11894/1005-829x.2016.36(12).029