[1] |
van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
|
[2] |
Stockholm Conference of Parties. Report of the Conference of the Parties of the Stockholm Convention on Persistent Organic Pollutants on the Work of Its Fourth Meeting [R]. Geneva, 4 to 8 May 2009.
|
[3] |
WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure[J]. Environmental Pollution, 2015, 196: 29-46. doi: 10.1016/j.envpol.2014.09.012
|
[4] |
SÜHRING R, DIAMOND M L, SCHERINGER M, et al. Organophosphate esters in Canadian Arctic air: Occurrence, levels and trends[J]. Environmental Science & Technology, 2016, 50(14): 7409-7415.
|
[5] |
甄翔. 全球每月使用1290亿只口罩[N]. 环球时报, 2022-02-22(5).
ZHEN X. 129 billion masks are used globally every month [N]. Global Times, 2022-02-22(in Chinese).
|
[6] |
李文红, 叶子浓. 基于专利信息的我国医用口罩产业技术创新发展研究[J]. 中国发明与专利, 2021, 18(3): 34-42. doi: 10.3969/j.issn.1672-6081.2021.03.005
LI W H, YE Z N. Research of medical mask industry technology innovation development based on patent information[J]. China Invention & Patent, 2021, 18(3): 34-42 (in Chinese). doi: 10.3969/j.issn.1672-6081.2021.03.005
|
[7] |
DHARMARAJ S, ASHOKKUMAR V, HARIHARAN S, et al. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment[J]. Chemosphere, 2021, 272: 129601. doi: 10.1016/j.chemosphere.2021.129601
|
[8] |
CHOWDHURY H, CHOWDHURY T, SAIT S M. Estimating marine plastic pollution from COVID-19 face masks in coastal regions[J]. Marine Pollution Bulletin, 2021, 168: 112419. doi: 10.1016/j.marpolbul.2021.112419
|
[9] |
WANG Z, AN C J, CHEN X J, et al. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering[J]. Journal of Hazardous Materials, 2021, 417: 126036. doi: 10.1016/j.jhazmat.2021.126036
|
[10] |
ZHANG Q Y, WANG Y, ZHANG C, et al. A review of organophosphate esters in soil: Implications for the potential source, transfer, and transformation mechanism[J]. Environmental Research, 2022, 204: 112122. doi: 10.1016/j.envres.2021.112122
|
[11] |
EYSSERIC E, GAGNON C, SEGURA P A. Uncovering transformation products of four organic contaminants of concern by photodegradation experiments and analysis of real samples from a local river[J]. Chemosphere, 2022, 293: 133408. doi: 10.1016/j.chemosphere.2021.133408
|
[12] |
YU X L, YIN H, YE J S, et al. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis: Kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses[J]. Chemical Engineering Journal, 2019, 374: 263-273. doi: 10.1016/j.cej.2019.05.193
|
[13] |
CHEN Y J, YE J S, CHEN Y, et al. Degradation kinetics, mechanism and toxicology of tris(2-chloroethyl) phosphate with 185 nm vacuum ultraviolet[J]. Chemical Engineering Journal, 2019, 356: 98-106. doi: 10.1016/j.cej.2018.09.007
|
[14] |
SONG Q Y, FENG Y P, LIU G G, et al. Degradation of the flame retardant triphenyl phosphate by ferrous ion-activated hydrogen peroxide and persulfate: Kinetics, pathways, and mechanisms[J]. Chemical Engineering Journal, 2019, 361: 929-936. doi: 10.1016/j.cej.2018.12.140
|
[15] |
CRISTALE J, DANTAS R F, de LUCA A, et al. Role of oxygen and DOM in sunlight induced photodegradation of organophosphorous flame retardants in river water[J]. Journal of Hazardous Materials, 2017, 323: 242-249. doi: 10.1016/j.jhazmat.2016.05.019
|
[16] |
SUN S B, JIANG J Q, ZHAO H X, et al. Photochemical reaction of tricresyl phosphate (TCP) in aqueous solution: Influencing factors and photolysis products[J]. Chemosphere, 2020, 241: 124971. doi: 10.1016/j.chemosphere.2019.124971
|
[17] |
TANG T, LU G N, WANG W J, et al. Photocatalytic removal of organic phosphate esters by TiO2: Effect of inorganic ions and humic acid[J]. Chemosphere, 2018, 206: 26-32. doi: 10.1016/j.chemosphere.2018.04.161
|
[18] |
YU X L, YIN H, PENG H, et al. Degradation mechanism, intermediates and toxicology assessment of tris-(2-chloroisopropyl) phosphate using ultraviolet activated hydrogen peroxide[J]. Chemosphere, 2020, 241: 124991. doi: 10.1016/j.chemosphere.2019.124991
|
[19] |
WANG C, SU Z H, HE M J. Dynamic variation and inhalation exposure of organophosphates esters and phthalic acid esters in face masks[J]. Environmental Pollution, 2023, 316(Pt 2): 120703.
|
[20] |
周大明. 新型溴代阻燃剂与邻苯二甲酸酯的光降解研究: 降解动力学及可能产物鉴定[D]. 广州: 暨南大学, 2020.
ZHOU D M. Photodegradation of novel brominated flame retardants and phthalates esters[D]. Guangzhou: Jinan University, 2020 (in Chinese).
|
[21] |
唐婷. 暴雨初期路面径流中典型有机污染物的迁移转化行为研究[D]. 广州: 华南理工大学, 2020.
TANG T. The sorption-desorption and degradation of organic contaminants from stormwater road runoff[D]. Guangzhou: South China University of Technology, 2020 (in Chinese).
|
[22] |
WANG W L, WU Q Y, HUANG N, et al. Potential risks from UV/H2O2 oxidation and UV photocatalysis: A review of toxic, assimilable, and sensory-unpleasant transformation products[J]. Water Research, 2018, 141: 109-125. doi: 10.1016/j.watres.2018.05.005
|
[23] |
LAU T K, CHU W, GRAHAM N. Reaction pathways and kinetics of butylated hydroxyanisole with UV, ozonation, and UV/O3 processes[J]. Water Research, 2007, 41(4): 765-774. doi: 10.1016/j.watres.2006.11.021
|
[24] |
孙敦宇, 杨绍贵, 向伟铭, 等. 有机磷酸酯阻燃剂降解方法的研究进展[J]. 环境化学, 2021, 40(2): 474-486. doi: 10.7524/j.issn.0254-6108.2020051603
SUN D Y, YANG S G, XIANG W M, et al. Research progress on degradation methods of organophosphorus flame retardants[J]. Environmental Chemistry, 2021, 40(2): 474-486 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020051603
|
[25] |
Da ROCHA O R S, DANTAS R F, NASCIMENTO W J Jr, et al. Organophosphate esters removal by UV/H2O2 process monitored by 31P nuclear magnetic resonance spectroscopy[J]. Brazilian Journal of Chemical Engineering, 2018, 35(2): 521-530. doi: 10.1590/0104-6632.20180352s20160568
|
[26] |
连文洁. 黄铁矿活化过硫酸盐降解有机磷酸酯的性能及机理研究[D]. 广州: 华南理工大学, 2019.
LIAN W J. The performance and mechanism of pyrite-activated persulfate degradation of organophosphates[D]. Guangzhou: South China University of Technology, 2019 (in Chinese).
|
[27] |
XU X X, CHEN J, QU R J, et al. Oxidation of Tris (2-chloroethyl) phosphate in aqueous solution by UV-activated peroxymonosulfate: Kinetics, water matrix effects, degradation products and reaction pathways[J]. Chemosphere, 2017, 185: 833-843. doi: 10.1016/j.chemosphere.2017.07.090
|
[28] |
SAINT-HILAIRE D, ISMAIL K Z, JANS U. Reaction of tris(2-chloroethyl)phosphate with reduced sulfur species[J]. Chemosphere, 2011, 83(7): 941-947. doi: 10.1016/j.chemosphere.2011.02.040
|
[29] |
YE J S, LIU J, LI C S, et al. Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2: Degradation products and impacts on bacterial proteome[J]. Water Research, 2017, 124: 29-38. doi: 10.1016/j.watres.2017.07.034
|
[30] |
LIU J, YE J S, CHEN Y F, et al. UV-driven hydroxyl radical oxidation of tris(2-chloroethyl) phosphate: Intermediate products and residual toxicity[J]. Chemosphere, 2018, 190: 225-233. doi: 10.1016/j.chemosphere.2017.09.111
|
[31] |
OU H S, LIU J, YE J S, et al. Degradation of tris(2-chloroethyl) phosphate by ultraviolet-persulfate: Kinetics, pathway and intermediate impact on proteome of Escherichia coli[J]. Chemical Engineering Journal, 2017, 308: 386-395. doi: 10.1016/j.cej.2016.09.076
|