[1] XIA K, LUO M B, LUSK C, et al. Polybrominated diphenyl ethers (PBDEs) in biota representing different trophic levels of the Hudson River, New York: From 1999 to 2005[J]. Environmental Science & Technology, 2008, 42(12): 4331-4337.
[2] van der VEEN I, de BOER J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis[J]. Chemosphere, 2012, 88(10): 1119-1153. doi: 10.1016/j.chemosphere.2012.03.067
[3] BLUM A, BEHL M, BIRNBAUM L S, et al. Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers?[J]. Environmental Science & Technology Letters, 2019, 6(11): 638-649.
[4] ZHU H K, AL-BAZI M M, KUMOSANI T A, et al. Occurrence and profiles of organophosphate esters in infant clothing and raw textiles collected from the United States[J]. Environmental Science & Technology Letters, 2020, 7(6): 415-420.
[5] YE L J, LI J H, GONG S, et al. Established and emerging organophosphate esters (OPEs) and the expansion of an environmental contamination issue: A review and future directions[J]. Journal of Hazardous Materials, 2023, 459: 132095. doi: 10.1016/j.jhazmat.2023.132095
[6] LAI S C, XIE Z Y, SONG T L, et al. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea[J]. Chemosphere, 2015, 127: 195-200. doi: 10.1016/j.chemosphere.2015.02.015
[7] 廖梓聪, 李会茹, 杨愿愿, 等. 有机磷酸酯(OPEs)的环境污染特征、毒性和分析方法研究进展[J]. 环境化学, 2022, 41(4): 1193-1215. doi: 10.7524/j.issn.0254-6108.2020121601 LIAO Z C, LI H R, YANG Y Y, et al. The pollution characteristics, toxicity and analytical methods of organophosphate esters(OPEs) in environments: A review[J]. Environmental Chemistry, 2022, 41(4): 1193-1215 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020121601
[8] MABEY W, MILL T. Critical review of hydrolysis of organic compounds in water under environmental conditions[J]. Journal of Physical and Chemical Reference Data, 1978, 7(2): 383-415. doi: 10.1063/1.555572
[9] REGNERY J, PÜTTMANN W. Occurrence and fate of organophosphorus flame retardants and plasticizers in urban and remote surface waters in Germany[J]. Water Research, 2010, 44(14): 4097-4104. doi: 10.1016/j.watres.2010.05.024
[10] ZHU X F, DENG S F, FANG Y, et al. Dehalococcoides-containing enrichment cultures transform two chlorinated organophosphate esters[J]. Environmental Science & Technology, 2022, 56(3): 1951-1962.
[11] CHEN Y Q, ZHANG Q, LUO T W, et al. Occurrence, distribution and health risk assessment of organophosphate esters in outdoor dust in Nanjing, China: Urban vs. rural areas[J]. Chemosphere, 2019, 231: 41-50. doi: 10.1016/j.chemosphere.2019.05.135
[12] 周佳敏, 赵静, 韦旭, 等. 上海市不同微环境室内灰尘中有机磷酸酯污染特征及健康风险评价[J]. 环境化学, 2023, 42(7): 2317-2327. doi: 10.7524/j.issn.0254-6108.2022102608 ZHOU J M, ZHAO J, WEI X, et al. The pollution characteristics and health risk assessment of organophosphate esters in indoor dust from different microenvironments in Shanghai[J]. Environmental Chemistry, 2023, 42(7): 2317-2327 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022102608
[13] McDONOUGH C A, de SILVA A O, SUN C X, et al. Dissolved organophosphate esters and polybrominated diphenyl ethers in remote marine environments: Arctic surface water distributions and net transport through fram strait[J]. Environmental Science & Technology, 2018, 52(11): 6208-6216.
[14] 曹渺, 郭昌胜, 张恒, 等. 黄河流域入海口典型区域有机磷酸酯分布特征和风险评估[J]. 环境科学, 2023, 44(3): 1378-1386. CAO M, GUO C S, ZHANG H, et al. Occurrence distribution and risk assessment of organophosphate esters in A typical area of the estuary in the Yellow River Basin[J]. Environmental Science, 2023, 44(3): 1378-1386 (in Chinese).
[15] WANG Y, YAO Y M, LI W H, et al. A nationwide survey of 19 organophosphate esters in soils from China: Spatial distribution and hazard assessment[J]. Science of the Total Environment, 2019, 671: 528-535. doi: 10.1016/j.scitotenv.2019.03.335
[16] ZHANG Z H, XU Y, WANG Y, et al. Occurrence and distribution of organophosphate flame retardants in the typical soil profiles of the Tibetan Plateau, China[J]. Science of the Total Environment, 2022, 807: 150519. doi: 10.1016/j.scitotenv.2021.150519
[17] WANG Y, SUN H W, ZHU H K, et al. Occurrence and distribution of organophosphate flame retardants (OPFRs) in soil and outdoor settled dust from a multi-waste recycling area in China[J]. Science of the Total Environment, 2018, 625: 1056-1064. doi: 10.1016/j.scitotenv.2018.01.013
[18] 韦旭. 电子废弃物拆解厂区室内环境中有机阻燃剂的污染特征、来源及职业健康风险评价[D]. 上海: 上海第二工业大学, 2022. WEI X. Pollution characteristics, sources and occupational health risk assessment of organic flame retardants in indoor environment of electronic waste dismantling plant[D]. Shanghai: Shanghai Polytechnic University , 2022 (in Chinese).
[19] 李旭, 刘杨, 吕佳佩, 等. 某城区降雪中OPEs污染特征与风险评估[J]. 中国环境监测, 2021, 37(6): 136-146. LI X, LIU Y, LYU J P, et al. Pollution characteristics and risk assessment of organophosphate esters in snow of an urban area[J]. Environmental Monitoring in China, 2021, 37(6): 136-146 (in Chinese).
[20] WANG L, XIAO Q R, YUAN M D, et al. Discovery of 18 organophosphate esters and 3 organophosphite antioxidants in food contact materials using suspect and nontarget screening: Implications for human exposure[J]. Environmental Science & Technology, 2022, 56(24): 17870-17879.
[21] FU J E, FU K H, HU B Y, et al. Source identification of organophosphate esters through the profiles in proglacial and ocean sediments from ny-ålesund, the Arctic[J]. Environmental Science & Technology, 2023, 57(5): 1919-1929.
[22] GAO F M, ZHANG X H, SHEN X M, et al. Exposure assessment of aryl-organophosphate esters based on specific urinary biomarkers and their associations with reproductive hormone homeostasis disruption in women of childbearing age[J]. Environment International, 2022, 169: 107503. doi: 10.1016/j.envint.2022.107503
[23] WAN W N, ZHANG S Z, HUANG H L, et al. Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China[J]. Environmental Pollution, 2016, 214: 349-353. doi: 10.1016/j.envpol.2016.04.038
[24] 鲍美君. 典型农田有机磷酸酯和邻苯二甲酸酯的污染特征、植物富集和生态风险[D]. 大连: 大连理工大学, 2021. BAO M J. Pollution characteristics, plant enrichment and ecological risk of organic phosphates and phthalates in typical farmland[D]. Dalian: Dalian University of Technology, 2021 (in Chinese).
[25] HUANG J N, YE L J, FANG M L, et al. Industrial production of organophosphate flame retardants (OPFRs): Big knowledge gaps need to be filled?[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 108(5): 809-818. doi: 10.1007/s00128-021-03454-7
[26] DAVID M D, SEIBER J N. Analysis of organophosphate hydraulic fluids in U. S. air force base soils[J]. Archives of Environmental Contamination and Toxicology, 1999, 36(3): 235-241. doi: 10.1007/s002449900466
[27] EGGEN T, HEIMSTAD E S, STUANES A O, et al. Uptake and translocation of organophosphates and other emerging contaminants in food and forage crops[J]. Environmental Science and Pollution Research, 2013, 20(7): 4520-4531. doi: 10.1007/s11356-012-1363-5
[28] CAO S X, ZENG X Y, SONG H, et al. Levels and distributions of organophosphate flame retardants and plasticizers in sediment from Taihu Lake, China[J]. Environmental Toxicology and Chemistry, 2012, 31(7): 1478-1484. doi: 10.1002/etc.1872
[29] CHEN M H, LIU Y H, GUO R X, et al. Spatiotemporal distribution and risk assessment of organophosphate esters in sediment from Taihu Lake, China[J]. Environmental Science and Pollution Research, 2018, 25(14): 13787-13795. doi: 10.1007/s11356-018-1434-3
[30] MARKLUND A, ANDERSSON B, HAGLUND P. Traffic as a source of organophosphorus flame retardants and plasticizers in snow[J]. Environmental Science & Technology, 2005, 39(10): 3555-3562.
[31] CUI D L, BI J, ZHANG Z N, et al. Organophosphorus flame retardant TDCPP-induced cytotoxicity and associated mechanisms in normal human skin keratinocytes[J]. Science of the Total Environment, 2020, 726: 138526. doi: 10.1016/j.scitotenv.2020.138526
[32] HOU M M, SHI Y L, NA G, et al. A review of organophosphate esters in indoor dust, air, hand wipes and silicone wristbands: Implications for human exposure[J]. Environment International, 2021, 146: 106261. doi: 10.1016/j.envint.2020.106261
[33] CARLSSON H, NILSSON U, ÖSTMAN C. Video display units: an emission source of the contact allergenic flame retardant triphenyl phosphate in the indoor environment[J]. Environmental Science & Technology, 2000, 34(18): 3885-3889.
[34] LEE H K, KANG H, LEE S, et al. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs[J]. Science of the Total Environment, 2020, 719: 137386. doi: 10.1016/j.scitotenv.2020.137386
[35] XU F C, GIOVANOULIS G, van WAES S, et al. Comprehensive study of human external exposure to organophosphate flame retardants via air, dust, and hand wipes: The importance of sampling and assessment strategy[J]. Environmental Science & Technology, 2016, 50(14): 7752-7760.
[36] VYKOUKALOVÁ M, VENIER M, VOJTA Š, et al. Organophosphate esters flame retardants in the indoor environment[J]. Environment International, 2017, 106: 97-104. doi: 10.1016/j.envint.2017.05.020
[37] HE C, WANG X Y, TANG S Y, et al. Concentrations of organophosphate esters and their specific metabolites in food in southeast Queensland, Australia: Is dietary exposure an important pathway of organophosphate esters and their metabolites?[J]. Environmental Science & Technology, 2018, 52(21): 12765-12773.
[38] POMA G, SALES C, BRUYLAND B, et al. Occurrence of organophosphorus flame retardants and plasticizers (PFRs) in Belgian foodstuffs and estimation of the dietary exposure of the adult population[J]. Environmental Science & Technology, 2018, 52(4): 2331-2338.
[39] ALZUALDE A, BEHL M, SIPES N S, et al. Toxicity profiling of flame retardants in zebrafish embryos using a battery of assays for developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity toward human relevance[J]. Neurotoxicology and Teratology, 2018, 70: 40-50. doi: 10.1016/j.ntt.2018.10.002
[40] BAJARD L, MELYMUK L, BLAHA L. Prioritization of hazards of novel flame retardants using the mechanistic toxicology information from ToxCast and Adverse Outcome Pathways[J]. Environmental Sciences Europe, 2019, 31(1): 1-19. doi: 10.1186/s12302-018-0176-7
[41] CAO D D, LV K, GAO W, et al. Presence and human exposure assessment of organophosphate flame retardants (OPEs) in indoor dust and air in Beijing, China[J]. Ecotoxicology and Environmental Safety, 2019, 169: 383-391. doi: 10.1016/j.ecoenv.2018.11.038
[42] SUN Y L, ZHU H K. A pilot study of organophosphate esters in surface soils collected from Jinan City, China: Implications for risk assessments[J]. Environmental Science and Pollution Research, 2020, 28: 3344-3353.
[43] YAN Z F, FENG C L, JIN X W, et al. Unbalanced pollution and ecological risk of organophosphate esters in Chinese surface water and land use under multiple driving factors[J]. Reviews of Environmental Contamination and Toxicology, 2023, 261(1): 1-15. doi: 10.1007/s44169-023-00025-1
[44] HONG X S, CHEN R, HOU R, et al. Triphenyl phosphate (TPHP)-induced neurotoxicity in adult male Chinese rare minnows (Gobiocypris rarus)[J]. Environmental Science & Technology, 2018: acs. est. 8b04079.
[45] YAN S H, WANG Q, YANG L H, et al. A comparison of the toxicity effects of tris(1, 3-dichloro-2-propyl)phosphate (TDCIPP) with tributyl phosphate (TNBP) reveals the mechanism of the apoptosis pathway in Asian freshwater clams (Corbicula fluminea)[J]. Environmental Science & Technology, 2020, 54(11): 6850-6858.
[46] ZHU Y, MA X F, SU G Y, et al. Environmentally relevant concentrations of the flame retardant tris(1, 3-dichloro-2-propyl) phosphate inhibit growth of female zebrafish and decrease fecundity[J]. Environmental Science & Technology, 2015, 49(24): 14579-14587.
[47] DASGUPTA S, CHENG V, VLIET S M F, et al. Tris(1, 3-dichloro-2-propyl) phosphate exposure during the early-blastula stage alters the normal trajectory of zebrafish embryogenesis[J]. Environmental Science & Technology, 2018, 52(18): 10820-10828.
[48] WANG L, HUANG X L, LASERNA A K C, et al. Metabolism of tri-n-butyl phosphate in earthworm Perionyx excavatus[J]. Environmental Pollution, 2018, 234: 389-395. doi: 10.1016/j.envpol.2017.11.098
[49] WANG L, HUANG X L, LASERNA A K C, et al. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate[J]. Scientific Reports, 2018, 8: 16440. doi: 10.1038/s41598-018-34814-9
[50] ZHU Y, ZHANG J Y, LIU Y X, et al. Environmentally relevant concentrations of the flame retardant tris(1, 3-dichloro-2-propyl) phosphate inhibit the growth and reproduction of earthworms in soil[J]. Environmental Science & Technology Letters, 2019, 6(5): 277-282.
[51] 罗庆, 吴中平, 王聪聪, 等. 4种草本植物对氯代有机磷酸酯阻燃剂污染土壤的修复能力研究[J]. 环境工程, 2023, 41(3): 155-162. LUO Q, WU Z P, WANG C C, et al. Remediation capability of four herbs on chlorinated organophosphate flame retardants contaminated soil[J]. Environmental Engineering, 2023, 41(3): 155-162 (in Chinese).
[52] ZOU X, HOU S G, WU S Y, et al. The first detection of organophosphate esters (OPEs) of a high altitude fresh snowfall in the northeastern Tibetan Plateau[J]. Science of the Total Environment, 2022, 838: 155615. doi: 10.1016/j.scitotenv.2022.155615
[53] NA G S, HOU C, LI R J, et al. Occurrence, distribution, air-seawater exchange and atmospheric deposition of organophosphate esters (OPEs) from the Northwestern Pacific to the Arctic Ocean[J]. Marine Pollution Bulletin, 2020, 157: 111243. doi: 10.1016/j.marpolbul.2020.111243
[54] ZHANG Z G, LIN G, LIN T, et al. Occurrence, behavior, and fate of organophosphate esters (OPEs) in subtropical paddy field environment: A case study in Nanning City of South China[J]. Environmental Pollution, 2020, 267: 115675. doi: 10.1016/j.envpol.2020.115675
[55] WU L P, CHLÁDKOVÁ B, LECHTENFELD O J, et al. Characterizing chemical transformation of organophosphorus compounds by 13C and 2H stable isotope analysis[J]. Science of the Total Environment, 2018, 615: 20-28. doi: 10.1016/j.scitotenv.2017.09.233
[56] SU G Y, LETCHER R J, YU H X. Organophosphate flame retardants and plasticizers in aqueous solution: PH-dependent hydrolysis, kinetics, and pathways[J]. Environmental Science & Technology, 2016, 50(15): 8103-8111.
[57] FANG Y D, KIM E, STRATHMANN T J. Mineral- and base-catalyzed hydrolysis of organophosphate flame retardants: Potential major fate-controlling sink in soil and aquatic environments[J]. Environmental Science & Technology, 2018, 52(4): 1997-2006.
[58] LIU Q F, LI L, ZHANG X M, et al. Uncovering global-scale risks from commercial chemicals in air[J]. Nature, 2021, 600(7889): 456-461. doi: 10.1038/s41586-021-04134-6
[59] 邢戎光, 张蓬, 纪浩, 等. 大气中有机磷酸酯的赋存状况及环境行为[J]. 环境化学, 2024, 43(1): 1-12. doi: 10.1002/etc.5651 XING Rongguang, ZHANG Peng, JI Hao, et al. A review on the occurrence and environmental behavior of organophosphate esters (OPEs) as new pollutants in air[J]. Environmental Chemistry, 2024, 43(1): 1-12(in Chinese). doi: 10.1002/etc.5651
[60] ZHOU X Y, LIANG Y, REN G F, et al. Biotransformation of tris(2-chloroethyl) phosphate (TCEP) in sediment microcosms and the adaptation of microbial communities to TCEP[J]. Environmental Science & Technology, 2020, 54(9): 5489-5497.
[61] 高慧娴, 刘宪斌, 田胜艳, 等. 有机磷酸酯在植物体内的吸收、积累、迁移与转化研究进展[J]. 环境化学,2024, 43(1): 186-198. GAO Huixian, LIU Xianbin, TIAN Shengyan, et al. Uptake, accumulation, translocation and transformation of organophosphate esters (OPEs) in plants: A review [J]. Environmental Chemistry, 2024, 43(1): 186-198(in Chinese).
[62] LIU Q, WANG X L, ZHOU J A, et al. Phosphorus deficiency promoted hydrolysis of organophosphate esters in plants: Mechanisms and transformation pathways[J]. Environmental Science & Technology, 2021, 55(14): 9895-9904.
[63] van den EEDE N, MAHO W, ERRATICO C, et al. First insights in the metabolism of phosphate flame retardants and plasticizers using human liver fractions[J]. Toxicology Letters, 2013, 223(1): 9-15. doi: 10.1016/j.toxlet.2013.08.012
[64] SUN Y, ZHAO L, TENG Y. Insight into influence mechanisms of pyrite and vernadite on the degradation performance of 2, 2’, 5-trichlorodiphenyl in a pyrophosphate-chelated Fenton-like reaction[J]. Chemical Engineering Journal, 2021, 410: 128345. doi: 10.1016/j.cej.2020.128345
[65] 刘祖发, 丁波, 刘珍珍, 等. Fenton试剂氧化降解水体有机磷酸酯的动力学研究[J]. 亚热带资源与环境学报, 2016, 11(1): 1-8. LIU Z F, DING B, LIU Z Z, et al. A dynamical study on oxidation degradation of OPEs in water by fenton’s reagent[J]. Journal of Subtropical Resources and Environment, 2016, 11(1): 1-8 (in Chinese).
[66] AMBASHTA R D, REPO E, SILLANPÄÄ M. Degradation of tributyl phosphate using nanopowders of iron and iron–nickel under the influence of a static magnetic field[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 11771-11777.
[67] YUAN X J, LACORTE S, CRISTALE J, et al. Removal of organophosphate esters from municipal secondary effluent by ozone and UV/H2O2 treatments[J]. Separation and Purification Technology, 2015, 156: 1028-1034. doi: 10.1016/j.seppur.2015.09.052
[68] LI D, ZHONG Y, ZHU X F, et al. Reductive degradation of chlorinated organophosphate esters by nanoscale zerovalent iron/cetyltrimethylammonium bromide composites: Reactivity, mechanism and new pathways[J]. Water Research, 2021, 188: 116447. doi: 10.1016/j.watres.2020.116447
[69] LI C, WEI G L, CHEN J W, et al. Aqueous OH radical reaction rate constants for organophosphorus flame retardants and plasticizers: Experimental and modeling studies[J]. Environmental Science & Technology, 2018, 52(5): 2790-2799.
[70] HOFFMANN M R, MARTIN S T, CHOI W, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69-96. doi: 10.1021/cr00033a004
[71] 孙敦宇, 杨绍贵, 向伟铭, 等. 有机磷酸酯阻燃剂降解方法的研究进展[J]. 环境化学, 2021, 40(2): 474-486. doi: 10.7524/j.issn.0254-6108.2020051603 SUN D Y, YANG S G, XIANG W M, et al. Research progress on degradation methods of organophosphorus flame retardants[J]. Environmental Chemistry, 2021, 40(2): 474-486 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020051603
[72] YU X L, YIN H, YE J S, et al. Degradation of tris-(2-chloroisopropyl) phosphate via UV/TiO2 photocatalysis: Kinetic, pathway, and security risk assessment of degradation intermediates using proteomic analyses[J]. Chemical Engineering Journal, 2019, 374: 263-273. doi: 10.1016/j.cej.2019.05.193
[73] HE H A, WANG X H, CHENG C, et al. Degradation of organophosphorus flame retardant tri(chloro-propyl)phosphate (TCPP) by (001) crystal plane of TiO2 photocatalysts[J]. Environmental Technology, 2021, 42(10): 1612-1622. doi: 10.1080/09593330.2019.1675771
[74] 李秋月. 三价铁介导紫外光催化降解有机磷酸酯同步去除六价铬的性能与机理研究[D]. 广州: 华南理工大学, 2021. LI Q Y. Study on the performance and mechanism of simultaneous removal of hexavalent chromium from organic phosphate catalyzed by trivalent iron under ultraviolet light[D]. Guangzhou: South China University of Technology, 2021 (in Chinese).
[75] 王晓寒. 基于纳米FeTiO3催化作用的羟基自由基和硫酸根自由基氧化磷酸三氯丙酯(TCPP)研究[D]. 南京: 南京师范大学, 2020. WANG X H. Oxidation of trichloropropyl phosphate (TCPP) by hydroxyl radical and sulfate radical based on nano-FeTiO3 catalysis[D]. Nanjing: Nanjing Normal University, 2020 (in Chinese).
[76] SUN D Y, WANG X H, JI Q Y, et al. Heterogeneous Fenton-like removal of tri(2-chloroisopropyl) phosphate by ilmenite (FeTiO3): Kinetic, degradation mechanism and toxic assessment[J]. Chemosphere, 2022, 307: 135915. doi: 10.1016/j.chemosphere.2022.135915
[77] PANG L, GE L M, YANG P J, et al. Degradation of organophosphate esters in sewage sludge: Effects of aerobic/anaerobic treatments and bacterial community compositions[J]. Bioresource Technology, 2018, 255: 16-21. doi: 10.1016/j.biortech.2018.01.104
[78] YANG Y Y, YIN H, PENG H, et al. Biodegradation of triphenyl phosphate using an efficient bacterial consortium GYY: Degradation characteristics, metabolic pathway and 16S rRNA genes analysis[J]. Science of the Total Environment, 2020, 713: 136598. doi: 10.1016/j.scitotenv.2020.136598
[79] 吴中平. 氯代有机磷酸酯污染土壤的植物-微生物联合修复[D]. 沈阳: 沈阳大学, 2022. WU Z P. Combined Phyto-microbial remediation of chlorinated organophosphate contaminated soils[D]. Shenyang: Shenyang University, 2022 (in Chinese).