[1] QI Y L, XIE Q R, WANG J J, et al. Deciphering dissolved organic matter by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS): From bulk to fractions and individuals[J]. Carbon Research, 2022, 1(1): 3. doi: 10.1007/s44246-022-00002-8
[2] D'ANDRILLI J, FISCHER S J, ROSARIO-ORTIZ F L. Advancing critical applications of high resolution mass spectrometry for DOM assessments: Re-engaging with mass spectral principles, limitations, and data analysis[J]. Environmental Science & Technology, 2020, 54(19): 11654-11656.
[3] McDONOUGH L K, ANDERSEN M S, BEHNKE M I, et al. A new conceptual framework for the transformation of groundwater dissolved organic matter[J]. Nature Communications, 2022, 13: 2153. doi: 10.1038/s41467-022-29711-9
[4] van der WAL A, de BOER W. Dinner in the dark: Illuminating drivers of soil organic matter decomposition[J]. Soil Biology and Biochemistry, 2017, 105: 45-48. doi: 10.1016/j.soilbio.2016.11.006
[5] HAN R X, LV J T, LUO L, et al. Molecular-scale investigation of soil fulvic acid and water-extractable organic matter by high-resolution mass spectrometry and 1H NMR spectroscopy[J]. Environmental Chemistry, 2019, 16(2): 92. doi: 10.1071/EN18124
[6] SMITH D F, PODGORSKI D C, RODGERS R P, et al. 21 tesla FT-ICR mass spectrometer for ultrahigh-resolution analysis of complex organic mixtures[J]. Analytical Chemistry, 2018, 90(3): 2041-2047. doi: 10.1021/acs.analchem.7b04159
[7] TOLIĆ N, LIU Y N, LIYU A, et al. Formularity: Software for automated formula assignment of natural and other organic matter from ultrahigh-resolution mass spectra[J]. Analytical Chemistry, 2017, 89(23): 12659-12665. doi: 10.1021/acs.analchem.7b03318
[8] LEEFMANN T, FRICKENHAUS S, KOCH B P. UltraMassExplorer: A browser-based application for the evaluation of high-resolution mass spectrometric data[J]. Rapid Communications in Mass Spectrometry, 2019, 33(2): 193-202. doi: 10.1002/rcm.8315
[9] KUNENKOV E V, KONONIKHIN A S, PERMINOVA I V, et al. Total mass difference statistics algorithm: A new approach to identification of high-mass building blocks in electrospray ionization Fourier transform ion cyclotron mass spectrometry data of natural organic matter[J]. Analytical Chemistry, 2009, 81(24): 10106-10115. doi: 10.1021/ac901476u
[10] SCHUM S K, BROWN L E, MAZZOLENI L R. MFAssignR: Molecular formula assignment software for ultrahigh resolution mass spectrometry analysis of environmental complex mixtures[J]. Environmental Research, 2020, 191: 110114. doi: 10.1016/j.envres.2020.110114
[11] KUJAWINSKI E B, BEHN M D. Automated analysis of electrospray ionization Fourier transform ion cyclotron resonance mass spectra of natural organic matter[J]. Analytical Chemistry, 2006, 78(13): 4363-4373. doi: 10.1021/ac0600306
[12] LI P H, TAO J C, LIN J, et al. Stratification of dissolved organic matter in the upper 2000 m water column at the Mariana Trench[J]. Science of the Total Environment, 2019, 668: 1222-1231. doi: 10.1016/j.scitotenv.2019.03.094
[13] FU Q L, FUJII M, RIEDEL T. Development and comparison of formula assignment algorithms for ultrahigh-resolution mass spectra of natural organic matter[J]. Analytica Chimica Acta, 2020, 1125: 247-257. doi: 10.1016/j.aca.2020.05.048
[14] 曹冬, 耿方兰, 饶子渔, 等. 傅里叶变换离子回旋共振质谱分子表征15N同位素标记羟胺衍生化天然有机质[J]. 环境化学, 2023, 42(4): 1118-1127. doi: 10.7524/j.issn.0254-6108.2022101902 CAO D, GENG F L, RAO Z Y, et al. Molecular characterization of 15N-labelled hydroxylamine-derivatized natural organic matter by FTICR-MS[J]. Environmental Chemistry, 2023, 42(4): 1118-1127 (in Chinese). doi: 10.7524/j.issn.0254-6108.2022101902
[15] STEVENSON F J. Humus chemistry: genesis, composition, reactions[M]. 2nd ed. New York: Wiley, 1994.
[16] KIM S, RODGERS R P, MARSHALL A G. Truly “exact” mass: Elemental composition can be determined uniquely from molecular mass measurement at ~0.1 mDa accuracy for molecules up to ~500 Da[J]. International Journal of Mass Spectrometry, 2006, 251(2/3): 260-265.
[17] SENKO M W, BEU S C, McLAFFERTY F W. Automated assignment of charge states from resolved isotopic peaks for multiply charged ions[J]. Journal of the American Society for Mass Spectrometry, 1995, 6(1): 52-56. doi: 10.1016/1044-0305(94)00091-D
[18] BROWN T L, RICE J A. Effect of experimental parameters on the ESI FT-ICR mass spectrum of fulvic acid[J]. Analytical Chemistry, 2000, 72(2): 384-390. doi: 10.1021/ac9902087
[19] LEENHEER J A, ROSTAD C E, GATES P M, et al. Molecular resolution and fragmentation of fulvic acid by electrospray ionization/multistage tandem mass spectrometry[J]. Analytical Chemistry, 2001, 73(7): 1461-1471. doi: 10.1021/ac0012593
[20] STENSON A C, LANDING W M, MARSHALL A G, et al. Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry[J]. Analytical Chemistry, 2002, 74(17): 4397-4409. doi: 10.1021/ac020019f
[21] LEENHEER J A, FERRER I, FURLONG E T, et al. Charge characteristics and fragmentation of polycarboxylic acids by electrospray ionization—Multistage tandem mass spectrometry[M]//ACS Symposium Series. Washington, DC: American Chemical Society, 2003: 312-324.
[22] KUJAWINSKI E B, HATCHER P G, FREITAS M A. High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: Improvements and comparisons[J]. Analytical Chemistry, 2002, 74(2): 413-419. doi: 10.1021/ac0108313
[23] KUJAWINSKI E B, FREITAS M A, ZANG X, et al. The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter[J]. Organic Geochemistry, 2002, 33(3): 171-180. doi: 10.1016/S0146-6380(01)00149-8
[24] NOVOTNY N R, CAPLEY E N, STENSON A C. Fact or artifact: The representativeness of ESI-MS for complex natural organic mixtures[J]. Journal of Mass Spectrometry:JMS, 2014, 49(4): 316-326. doi: 10.1002/jms.3345
[25] D’ANDRILLI J, CHANTON J P, GLASER P H, et al. Characterization of dissolved organic matter in northern peatland soil porewaters by ultra high resolution mass spectrometry[J]. Organic Geochemistry, 2010, 41(8): 791-799. doi: 10.1016/j.orggeochem.2010.05.009
[26] STENSON A C, MARSHALL A G, COOPER W T. Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra[J]. Analytical Chemistry, 2003, 75(6): 1275-1284. doi: 10.1021/ac026106p
[27] FU Q L, FUJII M, WATANABE A, et al. Formula assignment algorithm for deuterium-labeled ultrahigh-resolution mass spectrometry: Implications of the formation mechanism of halogenated disinfection byproducts[J]. Analytical Chemistry, 2022, 94(3): 1717-1725. doi: 10.1021/acs.analchem.1c04298
[28] ZHANG H F, ZHANG Y H, SHI Q, et al. Study on transformation of natural organic matter in source water during chlorination and its chlorinated products using ultrahigh resolution mass spectrometry[J]. Environmental Science & Technology, 2012, 46(8): 4396-4402.
[29] FU Q L, FUJII M, MA R. Development of a gaussian-based alignment algorithm for the ultrahigh-resolution mass spectra of dissolved organic matter[J]. Analytical Chemistry, 2023, 95(5): 2796-2803. doi: 10.1021/acs.analchem.2c04113
[30] KOCH B P, DITTMAR T, WITT M, et al. Fundamentals of molecular formula assignment to ultrahigh resolution mass data of natural organic matter[J]. Analytical Chemistry, 2007, 79(4): 1758-1763. doi: 10.1021/ac061949s
[31] KOCH B P, DITTMAR T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter[J]. Rapid Communications in Mass Spectrometry, 2006, 20(5): 926-932. doi: 10.1002/rcm.2386
[32] KELLERMAN A M, DITTMAR T, KOTHAWALA D N, et al. Chemodiversity of dissolved organic matter in lakes driven by climate and hydrology[J]. Nature Communications, 2014, 5: 3804. doi: 10.1038/ncomms4804
[33] LaROWE D E, van CAPPELLEN P. Degradation of natural organic matter: A thermodynamic analysis[J]. Geochimica et Cosmochimica Acta, 2011, 75(8): 2030-2042. doi: 10.1016/j.gca.2011.01.020
[34] KIDA M, MERDER J, FUJITAKE N, et al. Determinants of microbial-derived dissolved organic matter diversity in Antarctic Lakes[J]. Environmental Science & Technology, 2023, 57(13): 5464-5473.
[35] FU Q L, FUJII M, KWON E. Development and application of a high-precision algorithm for nontarget identification of organohalogens based on ultrahigh-resolution mass spectrometry[J]. Analytical Chemistry, 2020, 92(20): 13989-13996. doi: 10.1021/acs.analchem.0c02899
[36] GASPAR A, KUNENKOV E V, LOCK R, et al. Combined utilization of ion mobility and ultra-high-resolution mass spectrometry to identify multiply charged constituents in natural organic matter[J]. Rapid Communications in Mass Spectrometry:RCM, 2009, 23(5): 683-688. doi: 10.1002/rcm.3924
[37] CHEN S, XIE Q R, SU S H, et al. Source and formation process impact the chemodiversity of rainwater dissolved organic matter along the Yangtze River Basin in summer[J]. Water Research, 2022, 211: 118024. doi: 10.1016/j.watres.2021.118024
[38] BAE E, YEO I J, JEONG B, et al. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS[J]. Analytical Chemistry, 2011, 83(11): 4193-4199. doi: 10.1021/ac200464q
[39] YU K, DUAN Y H, GAN Y Q, et al. Anthropogenic influences on dissolved organic matter transport in high arsenic groundwater: Insights from stable carbon isotope analysis and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry[J]. The Science of the Total Environment, 2020, 708: 135162. doi: 10.1016/j.scitotenv.2019.135162
[40] CHEN X, LIU J H, CHEN J F, et al. Oxygen availability driven trends in DOM molecular composition and reactivity in a seasonally stratified fjord[J]. Water Research, 2022, 220: 118690. doi: 10.1016/j.watres.2022.118690