[1] JATOI A S, AKHTER F, MAZARI S A, et al. Advanced microbial fuel cell for waste water treatment: A review[J]. Environmental Science and Pollution Research, 2021, 28(5): 5005-5019. doi: 10.1007/s11356-020-11691-2
[2] HERNÁNDEZ-FERNÁNDEZ F J, PÉREZ DE LOS RÍOS A, SALAR-GARCÍA M J, et al. Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment[J]. Fuel Processing Technology, 2015, 138: 284-297. doi: 10.1016/j.fuproc.2015.05.022
[3] WANG H, REN Z J. Bioelectrochemical metal recovery from wastewater: A review[J]. Water Research, 2014, 66: 219-232. doi: 10.1016/j.watres.2014.08.013
[4] XIE X, YE M, HU L, et al. Carbon nanotube-coated macroporous sponge for microbial fuel cell electrodes[J]. Energy & Environmental Science, 2012, 5(1): 5265-5270.
[5] WEI J, LIANG P, ZUO K, et al. Carbonization and activation of inexpensive semicoke-packed electrodes to enhance power generation of microbial fuel cells[J]. ChemSusChem, 2012, 5(6): 1065-1070. doi: 10.1002/cssc.201100718
[6] HOU J, LIU Z, YANG S, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258: 204-209. doi: 10.1016/j.jpowsour.2014.02.035
[7] ZHENG J, CHENG C, ZHANG J, et al. Appropriate mechanical strength of carbon black-decorated loofah sponge as anode material in microbial fuel cells[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23156-23163. doi: 10.1016/j.ijhydene.2016.11.003
[8] CHEN S, HE G, LIU Q, et al. Layered corrugated electrode macrostructures boost microbial bioelectrocatalysis[J]. Energy & Environmental Science, 2012, 5(12): 9769-9772.
[9] CUI H F, DU L, GUO P B, et al. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode[J]. Journal of Power Sources, 2015, 283: 46-53. doi: 10.1016/j.jpowsour.2015.02.088
[10] ZHANG C, LIANG P, YANG X, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosensors and Bioelectronics, 2016, 81: 32-38. doi: 10.1016/j.bios.2016.02.051
[11] NARAYANASAMY S, JAYAPRAKASH J. Carbon cloth/nickel cobaltite (NiCo2O4)/polyaniline (PANI) composite electrodes: Preparation, characterization, and application in microbial fuel cells[J]. Fuel, 2021, 301: 121016. doi: 10.1016/j.fuel.2021.121016
[12] GE B, LI K, FU Z, et al. The performance of nano urchin-like NiCo2O4 modified activated carbon as air cathode for microbial fuel cell[J]. Journal of Power Sources, 2016, 303: 325-332. doi: 10.1016/j.jpowsour.2015.11.003
[13] AWASTHI M K. Engineered biochar: A multifunctional material for energy and environment[J]. Environmental Pollution, 2022, 298: 118831. doi: 10.1016/j.envpol.2022.118831
[14] KANT BHATIA S, PALAI A K, KUMAR A, et al. Trends in renewable energy production employing biomass-based biochar[J]. Bioresource Technology, 2021, 340: 125644. doi: 10.1016/j.biortech.2021.125644
[15] NOROUZI O, MARIA F D, DUTTA A. Biochar-based composites as electrode active materials in hybrid supercapacitors with particular focus on surface topography and morphology[J]. Journal of Energy Storage, 2020, 29: 101291. doi: 10.1016/j.est.2020.101291
[16] CHENG D, NGO H H, GUO W, et al. Applying a new pomelo peel derived biochar in microbial fell cell for enhancing sulfonamide antibiotics removal in swine wastewater[J]. Bioresource Technology, 2020, 318: 123886. doi: 10.1016/j.biortech.2020.123886
[17] BATAILLOU G, LEE C, MONNIER V, et al. Cedar wood-based biochar: Properties, characterization, and applications as anodes in microbial fuel cell[J]. Applied Biochemistry and Biotechnology, 2022, 194: 4169-4186. doi: 10.1007/s12010-022-03997-3
[18] SONAWANE J M, YADAV A, GHOSH P C, et al. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells[J]. Biosensors and Bioelectronics, 2017, 90: 558-576. doi: 10.1016/j.bios.2016.10.014
[19] 蔡靖, 刘思懿, 吴媛媛, 等. 同步脱氮除硫燃料电池的电化学特性研究[J]. 浙江大学学报(理学版), 2022, 49(1): 105-111.
[20] REN Z, WARD T E, REGAN J M. Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J]. Environmental Science & Technology, 2007, 41(13): 4781-4786.
[21] HUGGINS T, WANG H, KEARNS J, et al. Biochar as a sustainable electrode material for electricity production in microbial fuel cells[J]. Bioresource Technology, 2014, 157: 114-119. doi: 10.1016/j.biortech.2014.01.058
[22] NAVEENKUMAR M, SENTHILKUMAR K. Microbial fuel cell for harvesting bio-energy from tannery effluent using metal mixed biochar electrodes[J]. Biomass and Bioenergy, 2021, 149: 106082. doi: 10.1016/j.biombioe.2021.106082
[23] CHEN Q, PU W, HOU H, et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249: 567-573. doi: 10.1016/j.biortech.2017.09.086
[24] TORCHAŁA K, KIERZEK K, GRYGLEWICZ G, et al. Narrow-porous pitch-based carbon fibers of superior capacitance properties in aqueous electrolytes[J]. Electrochimica Acta, 2015, 167: 348-356. doi: 10.1016/j.electacta.2015.03.153
[25] VENKATA MOHAN S, SRIKANTH S. Enhanced wastewater treatment efficiency through microbially catalyzed oxidation and reduction: Synergistic effect of biocathode microenvironment[J]. Bioresource Technology, 2011, 102(22): 10210-10220. doi: 10.1016/j.biortech.2011.08.034
[26] LIU Y, XU X, SADD M, et al. Insight into the Critical Role of Exchange Current Density on Electrodeposition Behavior of Lithium Metal[J]. Advanced Science, 2021, 8(5): 2003301. doi: 10.1002/advs.202003301
[27] KARTHIKEYAN R, WANG B, XUAN J, et al. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157: 314-323. doi: 10.1016/j.electacta.2015.01.029
[28] BIAN B, SHI D, CAI X, et al. 3D printed porous carbon anode for enhanced power generation in microbial fuel cell[J]. Nano Energy, 2018, 44: 174-180. doi: 10.1016/j.nanoen.2017.11.070
[29] ERBAY C, YANG G, DE FIGUEIREDO P, et al. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells[J]. Journal of Power Sources, 2015, 298: 177-183. doi: 10.1016/j.jpowsour.2015.08.021
[30] XIE X, PASTA M, HU L, et al. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(4): 1293-1297.
[31] 苏志强, 付国楷, 王雪原, 等. 四室微生物燃料电池同步脱氮除碳及产电性能[J]. 环境工程学报, 2023, 17(9): 2879-2890.
[32] 蔡靖, 郑平, 胡宝兰, 等. 硫氮比对厌氧生物同步脱氮除硫工艺性能的影响[J]. 环境科学学报, 2008(8): 1506-1514.
[33] 魏炎, 张少辉, 赵丽, 等. 反硝化脱硫微生物燃料电池的可行性研究[J]. 环境科学学报, 2016, 36(8): 2832-2837.
[34] SUN M, MU Z X, CHEN Y P, et al. Microbe-assisted sulfide oxidation in the anode of a microbial fuel cell[J]. Environmental Science & Technology, 2009, 43(9): 3372-3377.
[35] XIA Y, LU D, QI Y, et al. Removal of nitrate from agricultural runoff in biochar electrode based biofilm reactor: Performance and enhancement mechanisms[J]. Chemosphere, 2022, 301: 134744. doi: 10.1016/j.chemosphere.2022.134744
[36] 郭昌梓, 姚佳玉, 张凤燕, 等. 硫自养反硝化燃料电池脱氮除硫及产电性能的实验研究[J]. 陕西科技大学学报, 2018, 36(4): 28-34.
[37] 谢霄云. MFC同步处理含硫含氮废水的运行效能及微生物群落分析[D]. 合肥: 合肥工业大学, 2022.
[38] JØRGENSEN B B. A thiosulfate shunt in the sulfur cycle of marine sediments[J]. Science, 1990, 249(4965): 152-154. doi: 10.1126/science.249.4965.152